## Continuous Glimm Functionals and Uniqueness of Solutions of the Riemann Problem

## MICHELLE SCHATZMAN

A ma grande Claude

## 1. Introduction

Let

(1.1) 
$$u_t + f(u)_x = 0, \quad x \in \mathbf{R}, t > 0$$

with initial condition

$$(1.2) u(x,0) = u_0(x)$$

be a strictly hyperbolic system of conservation laws. We denote by D the differentiation operator; f is a three times continuously differentiable mapping from an open set  $\mathcal{U}$  of  $\mathbf{R}^N$  to  $\mathbf{R}^N$ ; the assumption of strict hyperbolicity means that Df(u) has N distinct real eigenvalues for each u in  $\mathcal{U}$ :

$$(1.3) \lambda_1(u) < \lambda_2(u) < \ldots < \lambda_N(u).$$

We denote the right eigenvectors of Df(u) by  $r_i(u)$ 

$$(1.4) Df(u)r_i(u) = \lambda_i(u)r_i(u),$$

and by  $\ell_i(u)$  the left eigenvectors or eigenlinear forms of Df(u)

(1.5) 
$$\ell_i(u)Df(u) = \lambda_i(u)\ell_i(u).$$

Those names are standard in the literature, but as a number of differentiations on compositions of operators and vectors depending on u will be performed, it is safe to have in mind that the  $r_i(u)$  belong to the (trivial) tangent bundle to  ${}^{0}\!U$ , and that the  $\ell_i(u)$  belong to the (trivial) cotangent bundle of  ${}^{0}\!U$ . These spaces cannot be identified, due to the lack of a canonical pairing, via an orthogonal structure.

The i-th characteristic field is called genuinely nonlinear if

$$(1.6) D\lambda_i(u)r_i(u) \neq 0 \forall u,$$

and linearly degenerate if

(1.7) 
$$D\lambda_i(u)r_i(u)=0, \qquad \forall \ u.$$

533