The Multicyclic n-tuples of an n-multicyclic Operator, and Analytic Structures on its Spectrum

DOMINGO A. HERRERO & LEIBA RODMAN

1. Introduction. Let $\mathcal{L}(\mathcal{X})$ denote the algebra of all (bounded linear) operators acting on the complex separable Banach space \mathcal{X} , and let \mathcal{A} be a subalgebra of $\mathcal{L}(\mathcal{X})$ containing the identity operator. The *multiplicity* of \mathcal{A} is the cardinal number

$$\mu(\mathcal{A}) = \inf\{\operatorname{card}(\Gamma) : \mathcal{X} = / [Ax : A \in \mathcal{A}, x \in \Gamma]\},\$$

where \(\square\$ denotes "the closed linear span of."

An operator $T \in \mathcal{L}(\mathcal{X})$ is called *n-multicyclic* if $\mu[\mathcal{A}(T)] = n$, where $\mathcal{A}(T)$ denotes the weakly closed algebra generated by T. Equivalently, there exists an n-tuple (y_1, y_2, \ldots, y_n) in $\mathcal{X}^{(n)}$ (= the direct sum of n copies of \mathcal{X}) such that

$$\mathcal{X} = \bigvee \left\{ \sum_{j=1}^{n} p_j(T) y_j : p_j \text{ runs over all polynomials, } j = 1, 2, \dots, n \right\},$$

but \mathcal{X} is strictly larger than

$$\bigvee \left\{ \sum_{j=1}^{n-1} p_j(T) z_j : p_j \text{ runs over all polynomials, } j = 1, 2, \dots, n-1 \right\}$$

for all possible (n-1)-tuples $(z_1, z_2, \ldots, z_{n-1})$.

An *n*-tuple $(y_1, y_2, ..., y_n)$ with the above property is called a *multicyclic n-tuple* (for T).

Let $\mathcal{C}_n(T)$ denote the set of all multicyclic *n*-tuples of T, and let

$$\sigma_p^{(n)}(T^*) = \{\lambda \in \mathbb{C} : \dim \ker(\lambda - T)^* = n\},$$

where T^* denotes the (Banach space) adjoint of the operator T. The topological properties of $\mathscr{C}_n(T)^-$ (= the closure of $\mathscr{C}_n(T)$ in $\mathscr{X}^{(n)}$) and those of $\sigma_p^{(n)}(T^*)$ are closely related: