On the Minimum Area Problem

JOHN L. LEWIS

1. Introduction. Let S denote the class of univalent functions f in $\Delta = \{z: |z| < 1\}$ with f(0) = 0, f'(0) = 1. In [3] Goodman proposed the following problem: Find

(1.1)
$$\inf_{f \in S} \{ area[f(\Delta) \cap \Delta] \} = \beta_1.$$

Using a normal family type argument, it is easily seen that there exists $f_1 \in S$ with

(1.2)
$$\operatorname{area}[f_1(\Delta) \cap \Delta] = \beta_1.$$

Barnard and Suffridge (see [2, p. 536]) have made the following observations concerning f_1 :

(1.3) f_1 is circularly symmetric with respect to a ray through z = 0. If this ray is chosen to be the positive real axis, then $\mathbb{C} - [f(\Delta) \cup \Delta]$ consists of $(-\infty, -1)$ and an arc of $\{z : |z| = 1\}$, which is symmetric about the real axis and contains -1.

The first sentence in (1.3) is a consequence of the fact that circular symmetrization preserves area and increases the mapping radius of a simply-connected domain [7], as well as the observation that if g'(0) > 1, $g/g'(0) \in S$, and

(1.4)
$$\operatorname{area}[g(\Delta) \cap \Delta] = \operatorname{area}[f(\Delta) \cap \Delta],$$

where $f \in S$, then f cannot satisfy (1.2) with f_1 replaced by f (see the discussion following (6.3)). The second sentence in (1.3) follows from the first, (1.4), and simple properties of subordination.

Let \bar{E} , ∂E denote the closure and boundary of the set E. Put $\gamma = (\partial f_1(\Delta)) \cap \Delta$. The above authors also state that if γ is assumed twice continuously differentiable, then it can be shown that $|f_1'|$ is constant on $f_1^{-1}(\gamma)$. In this paper, we prove

Theorem 1. Let
$$f_1 \in S$$
 satisfy (1.2) and (1.3). There exist θ_0 , θ_1 , $0 < \theta_0 < \theta_1 < \pi$, and $\alpha > 0$ such that if $E_i = \{e^{i\theta} : \theta_i < \theta < 2\pi - \theta_i\}$, $i = 0, 1$, then

(1.5) f'_1 has a nonzero continuous extension to $E_0 \cup \Delta$ which is Hölder continuous with exponent 1/2 on E_0 ,