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1. Introduction. In the last decade, many function or distribution spaces have
been found to admit a decomposition, in the sense that every member of the space
is a linear combination of basic functions of a particularly elementary form. Such
decompositions simplify the analysis of the spaces and the operators acting on
them. Here we obtain two types of decompositions for distributions in the ho-
mogeneous Besov spaces B¢, —© < a < +%, 0 < p, ¢ = +=, and present some
applications of these results.

Defining the Fourier transform by £(£) = [f(x)e * tdx, let {¢,},cz be a family
of functions on R" satisfying
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The Besov space B;‘", —o << +o, 0<p, qg= +m, is the collection of all
fE J'/P (tempered distributions modulo polynomials) such that
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with the usual interpretation if ¢ = +oc. This definition is independent of the
family {o,} satisfying (1.1-4); see [20], p. 64.

Our purpose is to show that each f € B3 can be decomposed into a sum of
simple building blocks. The building blocks in our first decomposition are similar
to the atoms in the atomic decomposition of Hardy spaces H’(R"), 0 <p =1
([10], [18], [6], [30]). We define an (a,p)-atom a(x) (- < a < +o,
0 < p = +x) to be a function satisfying, for some cube O C R”,
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