Strong Differentiation of N-dimensional Subadditive Processes

TAKESHI YOSHIMOTO

Introduction. The purpose of this paper is to prove a strong differentiation theorem which describes the local norm-convergence for positive N-dimensional subadditive processes in a UMB-lattice. The result does make it possible to give a unified treatment of the local mean behavior of operator averages for strongly continuous semigroups $\{S_t: t \ge 0\}$ of positive linear contractions on $L_p(1 \le p < \infty)$ and the differentiability of indefinite integrals of (B)-integrable UMB-lattice valued functions. However, the convergence of this kind for such processes has not received a general treatment as compared with the local pointwise convergence sometimes called the differentiation ([1], [2], [3], [4]). The fact is that much less is known of subadditive (or superadditive) local mean ergodic theorems even in L_p -spaces (cf. [9]). The norm-convergence of $t^{-1}(S_t - I)f$ (t > 0) as $t \to 0$ is usually studied in the analytical theory of semigroups in connection with the infinitesimal generators ([7], [8], [10]). Our result has the additional advantage that the norm-convergence of $t^{-1}(S_t - I)f$ as $t \to +0$ can also be deduced from our result as a special case under the boundedness condition $\sup\{t^{-1}\|(S_t-I)f\|:t>0\}<\infty$. These applications will be mentioned at the end of this paper. The method of proof we have utilized in this work depends on the UMB-condition and the N-dimensional modification of a theorem of Hille and Phillips ([8], Theorem 7.11.1), so that the idea used by Derriennic and Krengel to prove the subadditive mean ergodic theorem in [6] has influence on the arguments.

I would like to thank the referee for his kind advice.

1. Preliminaries. Let \mathbf{R}_N $(N \ge 1)$ be the Euclidean N-space equipped with the N-dimensional Lebesgue measure λ_N . For $u \in \mathbf{R}_N$, $\xi_i(u)$ denotes the *i*-th component of u for each $i(1 \le i \le N)$. \mathbf{R}_N^+ is the positive cone of \mathbf{R}_N ,

$$\{u \in \mathbf{R}_N : \xi_i(u) \ge 0, 1 \le i \le N\},\$$

and \mathbf{P}_N is the interior of the cone \mathbf{R}_N^+ , $\{u \in \mathbf{R}_N^+ : \xi_i(u) > 0, 1 \le i \le N\}$. Given u, $v \in \mathbf{R}_N$, we write $u \le v$ or u < v according as $\xi_i(u) \le \xi_i(v)$ or $\xi_i(u) < \xi_i(v)$ for each $i(1 \le i \le N)$. If u, $v \in \mathbf{R}_N^+$ and u < v, then a left-half-open interval $I_{u,v} = (u,v]$ shall mean the set $\{x \in \mathbf{R}_N^+ : u < x \le v\}$. By \mathcal{F}_N^+ we denote the class of all