Helical Submanifolds in Euclidean Spaces
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1. Introduction. Let M" be a connected n-dimensional (r > 1) submanifold
of an m-dimensional Euclidean space E™. If every geodesic of M, considered as
a curve in the ambient space, has all Frenet curvatures constant and these cur-
vatures are independent of the chosen geodesic, then M" is called a helical sub-
manifold of E™ [8]. A helical submanifold is said to be of order d if each geodesic
is properly contained in a d-plane of E™. Helical submanifolds were investigated
in [3], [4], [5], [7], [8], [9]. In [3], [4] Chen and Verheyen classified helical
surfaces in E™ (m = 3,4,5). They showed that a helical surface in E™ (m = 3,4,5)
is a 2-plane or the second standard immersion of a 2-sphere (i.e., a 2-sphere or
a Veronese surface). In [5], Houh and the author proved that there is no surface
M helically immersed into E™ of order 3.

Several years ago, B. Y. Chen conjectured that any helical submanifold of E™
is either spherical or an open portion of an n-plane. In this article, we show that
any compact helical submanifold in E™ with a transitive isometry group is spher-
ical. We also show that a helical surface of order 4 must be of positive constant
curvature, and classify all helical immersions of compact rank one symmetric
spaces.
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2. Notations and basic formulas. Assume that M is an n-dimensional sub-
manifold immersed into E™. Let V and V be the covariant derivatives of M and
E™, respectively. For any two vector fields X, Y tangent to M, the second fun-
damental form A is given by

WX,Y)=VyY — ViY.
For any vector field normal to M, we put
ViE = —AX + Vii,
where —A.X and Vi & denote the tangential and normal components of ng re-
spectively. Then V* is called the normal connection of the normal bundle N(M).
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