The Comass Ball in $\Lambda^3(\mathbf{R}^6)^*$

REESE HARVEY & FRANK MORGAN

1. Introduction. A form ϕ on a Riemannian manifold which is *d*-closed and has comass one is called a calibration. Associated with a calibration is a geometry of submanifolds consisting of those submanifolds on which ϕ is a volume form. Such ϕ -submanifolds are homologically volume minimizing. Several new examples of calibrated geometries were introduced in Harvey-Lawson [3] (also see the survey [2]).

The important case of constant coefficient calibrations $\phi \in \Lambda^p(\mathbf{R}^n)^*$ on euclidean space is far from understood. The grassmannian $G(p,\mathbf{R}^n)$ of oriented (unit) p-planes in \mathbf{R}^n is naturally identified with the compact submanifold of $\Lambda^p\mathbf{R}^n$ consisting of all simple (decomposable) p-vectors ξ of unit length. A form of φ has $comass \|\varphi\|^*$ equal to the supremum of φ over $G(p,\mathbf{R}^n)$. Thus the $comass \ ball \ K^* \equiv \{\varphi: \|\varphi\|^* \le 1\}$ is dual to the convex hull K of $G(p,\mathbf{R}^n)$. The set K is referred to as the $mass \ ball$. In terms of the associated hyperplane $\{\xi: \varphi(\xi) = 1\}$, φ has comass one if and only if $G(p,\mathbf{R}^n)$ lies in the half-space $\{\xi: \varphi(\xi) \le 1\}$, and intersects the hyperplane $\{\xi: \varphi(\xi) = 1\}$.

If ϕ has comass one then the contact set

$$\{\xi \in G(p, \mathbf{R}^n) : \varphi(\xi) = 1\}$$

will be denoted $G(\phi)$ and sometimes referred to as the ϕ -grassmannian.

The purpose of this paper is to describe the comass ball K^* in the simplest non-classical case, p=3, n=6. Part of the description is available from Dadok-Harvey [1] and Morgan [5] and [6], and part of the description is new. Each form $\psi \in \Lambda^3(\mathbf{R}^6)^*$ is orthogonally equivalent to a form ϕ in the five-dimensional space V^5 consisting of all forms:

$$\phi(\lambda,\mu) \equiv \lambda_0 e_{123}^* + \lambda_1 e_{156}^* + \lambda_2 e_{426}^* + \lambda_3 e_{453}^* + \mu e_{456}^*.$$

Theorem 3.8 describes the intersection of the comass ball K^* with this section V^5 . There are two useful preliminary subcases. First, suppose one of the $\lambda_j=\pm 1$, say $\lambda_0=1$. Then a formula for the forms $\phi(1,\lambda_1,\lambda_2,\lambda_3,\mu)$ of comass at most one is given in Dadok-Harvey [1]. Second, Theorem 2.20 treats the subcase $\mu=0$ and gives a formula for the comass of the form $\phi(\lambda_0,\lambda_1,\lambda_2,\lambda_3)$ to be at most 1. Namely, $\|\phi(\lambda)\|^* \le 1$ if and only if $\max |\lambda_j| \le 1$ and

$$2-\lambda_0^2-\lambda_1^2-\lambda_2^2-\lambda_3^2-2\lambda_0\lambda_1\lambda_2\lambda_3+2[(1-\lambda_0^2)(1-\lambda_1^2)(1-\lambda_2^2)(1-\lambda_3^2)]^{1/2}\geq 0.$$