Estimates for the Bochner-Riesz Operator with Negative Index

LENNART BÖRJESON

Introduction. The purpose of this paper is to determine certain $(L^p(\mathbf{R}^n), L^q(\mathbf{R}^n))$ estimates for the Bochner-Riesz operator with negative index and $n \ge 2$. These operators are defined on $\mathcal{G}(\mathbf{R}^n)$, the class of rapidly decreasing C^{∞} functions, by the equation

$$(T_{\alpha}f)\hat{}(\xi) = m_{\alpha}(\xi)\hat{f}(\xi), \qquad \xi \in \mathbf{R}^n, \, \alpha < 1,$$

where $m_{\alpha}(\xi) = C_{\alpha}(1 - |\xi|^2)^{-\alpha}$ if $|\xi| < 1$, $m_{\alpha}(\xi) = 0$ if $|\xi| \ge 1$ and $C_{\alpha} = (2\pi)^{-n/2}2^{\alpha}/\Gamma(1-\alpha)$. Γ is the gamma function. If $\alpha < 1$, then the multiplier m_{α} is integrable and the operator T_{α} is well defined. But because of the factor C_{α} we can extend T_{α} to all complex α by analytic continuation or by considering the inverse Fourier transform of m_{α} . That is

$$\check{m}_{\alpha}(x) = \int_{\mathbf{R}^n} e^{ix\cdot\xi} m_{\alpha}(\xi) d\xi = |x|^{-n/2+\alpha} J_{n/2-\alpha}(|x|),$$

where $J_{n/2-\alpha}$ is the Bessel function of order $n/2-\alpha$ (see Stein & Weiss [10] or Watson [12]) and we get $T_{\alpha}f = \check{m}_{\alpha} * f$.

For $\alpha = 1$ this becomes

$$T_1 f(x) = \check{m}_1 * f(x) = C \int_{S^{n-1}} e^{-ix \cdot \theta} \check{f}(\theta) d\theta = C(\check{f} d\theta) \hat{x}(x),$$

where $d\theta$ denotes the surface measure on the unit sphere S^{n-1} . See Gel'fand & Shilov [8].

We will only consider the case Re $\alpha \le (n+1)/2$, since \check{m}_{α} is unbounded if Re $\alpha > (n+1)/2$. The (L^p, L^q) estimates for T_{α} , p=q, $\alpha \le 0$, are treated in [2], [3], [5]–[7]. The case p < q, $\alpha \le 0$, n=2 is easily derived from the case p=q (see also Remark 2).

The origin of the techniques used in this paper and background to the subject can be found in Bochner [1], Stein [9] and Stein & Weiss [10].

To make the description of the type set of T_{α} easier, we define some parameters.