Monotonicity Properties of Variational Integrals, A_p Weights and Unique Continuation

NICOLA GAROFALO & FANG-HUA LIN

- 1. Introduction and statement of the results. Let Ω be a connected open subset of \mathbb{R}^n , $n \ge 3$, and let A(x) be a symmetric $n \times n$ matrix-valued function on Ω on which we make the following assumptions:
 - (i) there exists a $\Gamma > 0$ such that for every $x, y \in \Omega$

$$(1.1) |a_{ii}(x) - a_{ii}(y)| \le \Gamma |x - y|, i, j = 1, ..., n;$$

(ii) there exists a $\lambda \in (0,1)$ such that for every $x \in \Omega$ and $\xi \in \mathbf{R}^n$

(1.2)
$$\lambda |\xi|^2 \le \langle A(x)\xi, \xi \rangle \le \lambda^{-1} |\xi|^2.$$

We will consider solutions, u, to the equation

(1.3)
$$Lu = \operatorname{div}(A(x)\nabla u(x)) = 0 \quad \text{in } \Omega$$

By this we will mean that $u \in H^{1,2}_{loc}(\Omega)$ and that for every $\phi \in H^{1,2}_0(\Omega)$

$$\int_{\Omega} \langle A(x)\nabla u(x), \nabla \phi(x) \rangle dx = 0.$$

Under the assumptions (1.1) and (1.2) it is well known (see, e.g., [GT], Theorem 8.8) that every solution to (1.3) is in $H_{loc}^{2,2}(\Omega)$. Since all the results in this paper are of a local nature, we will assume henceforth that Ω strictly contains \bar{B}_2 , the closure of the ball with radius 2 and center at the origin.

One of the main results of this paper can be stated as follows.

Theorem 1.1. Let $u \in H^{1,2}_{loc}(\Omega)$ be a solution to (1.3). (i) If $u \not\equiv 0$ there exist a p > 1 and a constant A > 0 such that for any ball B_R , such that the concentric ball $B_{2R} \subset B_1$, we have

(1.4)
$$\left(\frac{1}{|B_R|}\int_{B_R}|u|dx\right)\left(\frac{1}{|B_R|}\int_{B_R}|u|^{-1/(p-1)}dx\right)^{p-1} \leq A.$$

In (1.4) A and p depend on u, Γ , λ , n, but do not depend on B_R . (ii) If $u \not\equiv \text{const.}$ there exist a q > 1 and a constant B > 0 such that for any ball B_R as in (i)