On Certain Inductive Limit C*-Algebras

CORNEL PASNICU

It has been suggested by E. G. Effros [6] that a study of inductive limits of C*-algebras of the form $\mathscr{C}(X) \otimes F$ (with F finite-dimensional C*-algebra), as a generalization of A.F.-algebras, may be of interest.

Indeed, such algebras are, for instance, those considered by J. Bunce and J. Deddens (in [3]).

The present paper contains general results concerning inductive limits of algebras of the form $\mathscr{C}(X) \otimes F$ as well as a structure theorem for a certain class of inductive limits of C^* -algebra of the form $\mathscr{C}(\mathbf{T}^2) \otimes M_n$.

For each positive integer $p \ge 1$, let $\mathscr{C}^*(S(p))$ be the C^* -algebra generated by all weighted shifts (with respect to some fixed orthonormal basis $(e_m)_{m\ge 0}$ of the Hilbert space \mathscr{H}) of period p.

Given a strictly increasing sequence of positive integers (n_k) , with n_k dividing n_{k+1} for all $k \ge 1$, the Bunce-Deddens algebra, denoted in this paper by $\mathcal{A}((n_k))$, is $\bigcup_{k} v(\mathcal{C}^*(S(n_k)))$ (see [3]), where $v:B(\mathcal{H}) \to B(\mathcal{H})/K(\mathcal{H})$ is the canonical surjection onto the Calkin algebra.

It follows from ([2], proof of Theorem 2.2) that, for $p \ge 2$, $\nu(\mathcal{C}*(S(p)))$ is *-isomorphic to $M_p(\mathcal{C}(\mathbf{T})) \equiv$ the algebra of all $p \times p$ matrices whose entries are continuous functions on the unit circle **T**. Under this isomorphism, if S is the weighted shift given by $Se_m = d_{m+1}e_{m+1}$ $(m \ge 1)$, where $d_{m+p} = d_m$ for all $m \ge 1$, then $\nu(S)_{1,p}(z) = d_p z$, $\nu(S)_{i+1,i}(z) = d_i I$ for $1 \le i \le p-1$ and $\nu(S)_{i,j} = 0$ for all other i, j.

Using these *-isomorphisms, each $\mathcal{A}((n_k))$ is *-isomorphic to the inductive limit of:

$$\mathscr{C}(\mathbf{T}) \otimes M_{n_1} \xrightarrow{\Psi_1} \mathscr{C}(\mathbf{T}) \otimes M_{n_2} \xrightarrow{\Psi_2} \dots$$

where for each k, Ψ_k is a *particular* isometric *-homomorphism which is *compatible* with the covering map $T \ni z \mapsto z^{n_{k+1}/n_k} \in T$ (in the sense of Definition 2.2 below).

We shall now state the main result of this paper.

We fix two strictly increasing sequences of positive integers (p_k) , (q_k) , with p_k (resp. q_k) dividing p_{k+1} (resp. q_{k+1}) for all $k \ge 1$.

We consider systems of the form: