Commutators in Ideals of Trace Class Operators

JOEL ANDERSON & L. N. VASERSTEIN

§1. Introduction. Fix p > 0 and let C_p denote the Schatten p-class of operators. Thus C_p stands for the familiar 2-sided ideal of operators in the ring $\mathcal{B}(\mathcal{X})$ of bounded linear operators acting on the (complex, separable, and infinite-dimensional) Hilbert space \mathcal{X} . This paper arose from an attempt to calculate $K_1(C_p,\mathcal{B}(\mathcal{X}))$, the algebraic K_1 group of C_p relative to the ring $\mathcal{B}(\mathcal{X})$. Due to the work of Brown and Schochet [1] and Karoubi [3], it is known that for p > 1 this group is 0. If $p \leq 1$, however, the question is apparently still open; moreover, the situation here is quite different. For $p \leq 1$, the determinant det gives a homomorphism

$$\det_*: K_1(\mathcal{C}_p, \mathcal{B}(\mathcal{X})) \to \mathbf{C}^*$$

onto the multiplicative group of nonzero complex numbers. Hence for each $p \le 1$ the relative K_1 group is not zero.

In terms of K-theory the main result to be presented here is that if p=1, then the determinant is not a complete invariant. In fact, we shall see that the kernel of \det_* is isomorphic to the additive group of a vector space of uncountable dimension. Since \mathcal{C}_p is isomorphic to the n by n matrices with entries from \mathcal{C}_p and the stable range of this ring is 1 [7, 9], it follows that $K_1(\mathcal{C}_p, \mathcal{B}(\mathcal{X}))$ may be identified with the quotient of the group of invertible elements of $\mathcal{B}(\mathcal{X})$ of the form 1+J where J is in \mathcal{C}_p by the commutator subgroup

$$\{1+\mathcal{C}_p,\mathcal{B}(\mathcal{X})\}$$

generated by operators of the form

$$\{1+J,S\} := (1+J)S(1+J)^{-1}S^{-1}$$

where S and 1+J are invertible and J is in \mathcal{C}_p . We shall show that membership in

$$\{1+\mathcal{C}_p,\mathcal{B}(\mathcal{X})\}$$

345

Indiana University Mathematics Journal ©, Vol. 35, No. 2 (1986)