Commutators in Ideals of Trace Class Operators II

JOEL ANDERSON

As its title indicates, this note is a continuation of the preceding paper [1]. The reader is referred to it for the notations and definitions that are used here. The main result in this work is as follows.

Theorem 1. If p < 1, then

$$[\mathcal{C}_p,\mathcal{B}(\mathcal{X})] = [\mathcal{C}_{2p},\mathcal{C}_{2p}] = \mathcal{C}_p^{\,0}\,.$$

This theorem together with the results of [1] immediately yields the following.

Corollary 2. If p < 1 and $J \in C_p$, then

$$1+J \in \{1+\mathcal{C}_p,\mathcal{B}(\mathcal{X})\}$$

if and only if det(1+J) = 1.

Proof. The assertion is implied by Theorem 1 and [1, Theorem 19].

Corollary 3. If p < 1, then the map

$$\det_*: K_1(\mathcal{C}_p, \mathcal{B}(\mathcal{X})) \to \mathbf{C}^*$$

is an isomorphism.

Proof. As observed in [1], \det_* is surjective. By Theorem 20 of [1] the kernel of \det_* is isomorphic to the additive group of

$$\frac{\mathcal{C}_p^{\,0}}{[\mathcal{C}_p,\mathcal{B}(\mathcal{X})]}$$

and by Theorem 1 this space is 0. Hence det* is also injective.

It is convenient to begin the proof of Theorem 1 with a lemma. If J is a self-adjoint compact operator, write $\|J\|_p^p$ for the sum of the p-th powers of the absolute values of its eigenvalues. Thus, $J \in \mathcal{C}_p$ if and only if $\|J\|_p^p < \infty$.