A Strong Approximation Theorem for Real Cycles

HAROLD R. PARKS

We will use the notation and terminology of [AF1]. Our main result, which answers a question posed by Almgren concerning the isoperimetric inequality (see the Remark at the end of this paper), is the following.

Theorem. Corresponding to each size bounded rectifiable cycle $T = \mathbf{t}(S, \vartheta, \xi) \in \mathbf{S}_m(\mathbf{R}^{m+n})$ and each $\varepsilon > 0$ there exists a bi-lipschitzian diffeomorphism $f \colon \mathbf{R}^{m+n} \to \mathbf{R}^{m+n}$ and a polyhedral cycle $P \in \mathbf{P}_m(\mathbf{R}^{m+n})$ with the following properties:

- (1) $\operatorname{Lip}(f) < 1 + \varepsilon$, $\operatorname{Lip}(f^{-1}) < 1 + \varepsilon$.
- (2) $\operatorname{spt}(f) \subset \{x: \operatorname{dist}(x,\operatorname{spt}(T)) < \varepsilon\},$
- (3) $|f(x)-x|<\varepsilon$ for each $x\in\mathbb{R}^{m+n}$,
- (4) $\mathbf{M}(T f_{\sharp}P) < \varepsilon$, $\mathbf{S}(f_{\sharp}P) < (1 + \varepsilon)\mathbf{S}(T)$,
- (5) $\Theta^m(\|P\|,x)$ is a rational number for $\|P\|$ almost every $x \in \mathbb{R}^{m+n}$.

Proof. Applying the Strong Approximation Theorem of [AF1; 2.11] to a cone over T and considering the boundary of the resulting polyhedral chain, we see that we obtain a bi-lipschitzian diffeomorphism f and a polyhedral cycle $Q \in \mathbf{P}_m(\mathbf{R}^{m+n})$ satisfying (1)-(4) with P replaced by Q. Suppose Q is of the form

$$Q = \sum_{j=1,2,\ldots,N} X_j \Xi_j,$$

where the Ξ_j are m-dimensional simplices which are \mathcal{X}^m almost pairwise disjoint and the X_j are non-zero real numbers. Let $\Delta_1, \Delta_2, \ldots, \Delta_M$ be a set of (m-1)-dimensional simplices which are \mathcal{X}^{m-1} almost pairwise disjoint and are such that