Brownian Motion and Area Functions

RODRIGO BAÑUELOS

§0. Introduction

Let $D=\{z\in \mathbb{C}\colon |z|<1\}$ be the unit disc in the complex plane and let $T=\partial D$ be the unit circle. $dm=d\vartheta/2\pi$ will denote the normalized Lebesgue measure on T. For every $0<\alpha<1$ we define the Stoltz domain $\Gamma_{\alpha}(\vartheta)$ to be the interior of the smallest convex set containing the disc $\{|z|<\alpha\}$ and the point $e^{i\vartheta}$. If f is an integrable function defined on T, we will write u for its harmonic extension to D. Define

$$A_{\alpha}(f)(\vartheta) = \left(\int_{\Gamma_{\alpha}(\vartheta)} |\nabla u(z)|^2 \, dx \, dy\right)^{1/2}$$

and

$$(0.2) g_{\star}(f)(\vartheta) = \left(\frac{1}{\pi} \int_{D} \log \frac{1}{|z|} P_{\vartheta}(z) |\nabla u(z)|^{2} dx dy\right)^{1/2},$$

where z = x + iy and

$$P_{\vartheta}(z) = \frac{1 - |z|^2}{|z - e^{i\vartheta}|^2},$$

the Poisson kernel for D. $A_{\alpha}(f)$ is called the Lusin area function and $g_{*}(f)$ is pointwise comparable with the classical Littlewood-Paley g_{*} -function.

It is not difficult to show that if $A_{\alpha}(f)$ is a bounded function, then f belongs to the space BMO and hence the John–Nirenberg theorem implies that f is in the exponential class. In other words, $\exp(C|f|) \in L^1(T)$ for some positive constant C. (See [9] for definition and properties of BMO–functions.) But in fact more is true. It was proved in [5] that if $A_{\alpha}(f)(\vartheta) \leq 1$ a.e., then there are constants C_{α} and C'_{α} depending only on α such that

(0.3)
$$\int_{T} \exp(C_{\alpha} |f - f_0|^2) dm \leq C'_{\alpha},$$

where $f_0 = \int_T f \, dm$. It is easy to show that $A_{\alpha}(f)(\vartheta) \leq C''_{\alpha}g_*(f)(\vartheta)$ a.e. for some constant C''_{α} . Thus, the boundedness of $g_*(f)$ also gives exponential