Removable Sets for Weak L^p

ROBERT KAUFMAN

§1. Let $L_{p^{\infty}}$, or weak L^p , be the class of measurable functions f on R^2 such that $\sup \lambda^p m(|f| > \lambda) < +\infty$. We are interested in removable sets for analytic functions of class $L_{p^{\infty}}$ (2); more precisely in this problem: <math>f is in $L_{p^{\infty}}(R^2)$ and analytic outside a closed set E. It is known that E has finite Hausdorff h-measure; when does it follow that f is equal almost everywhere to an entire function? The answer is given in Theorems 1 and 2.

The spaces $L_{p^{\infty}}$ have an ancillary role and it is worthwhile to explain the interest in $L_{p^{\infty}}$ instead of more usual spaces. In fact, the corresponding problem for L^p (also called L_{pp} or $strong\ L^p$) is relatively trivial. In proving the sufficiency of the condition on h, we are guided by knowledge of the function space dual to $L_{p^{\infty}}$; in proving the necessity of the same condition, an entirely different method is used, with no apparent relation to the sufficiency, or indeed to the known techniques in constructions of examples, [1].

Finally, the space $L_{p^{\infty}}$ arises naturally in the theory of Hausdorff measures; if $\alpha=(p-2)(p-1)^{-1}$, $0<\alpha<1$, and a closed set E has positive Λ^{α} -measure, then by a theorem of Frostman [4] and elementary estimations, E is not removable for $L_{p^{\infty}}$. For certain sets E of positive Λ^{α} -measure, the function f (analytic off E but not entire) cannot obey the condition $m(|f|>\lambda)=o(\lambda^{-p})$, $\lambda\to+\infty$, [8, p. 109]. These two facts suggest a simple answer to our main problem, which turns out to have a much more subtle solution.

§2. Theorem 1. Let h be increasing and positive on $(0, +\infty)$ and suppose that $\sum_{0}^{\infty} [h(2^{-m})2^{\alpha m}]^{-1/1-\alpha} < +\infty$. Let E be a closed set of finite Hausdorff h-measure.

If f is in $L_{p^{\infty}}(\mathbb{R}^2)$, and is analytic off E, then f can be modified (on E) to be an entire function.

After proving Theorem 1, we obtain a converse to it, and then explain some relations to the theory of capacities based on Lebesgue spaces. Our converse to Theorem 1 is not the strongest one that might be conjectured; some indications about other possible results are discussed.

Proof of Theorem 1. Let φ be a C^1 function of compact support; we prove that $\int \bar{\partial} \varphi f(z) dx dy = 0$, where $\bar{\partial}$ is defined by $2\bar{\partial} = \partial/\partial x + i\partial/\partial y$. Then