Smooth \mathbf{Z}_p Actions on $S^n \times D^k$

RONALD M. DOTZEL

§0. Introduction. Suppose that G is a finite group with periodic cohomology of period r acting smoothly and semifreely on a homotopy sphere Σ^{n+k} with fixed set F^n . If $F_1^n \subset F^n$ is a submanifold with boundary having the $\mathbf{Z}_{(P)}$ homology of S^m (0 < m < n) (P is the set of primes dividing |G|), then F_1^n determines an element in $\widetilde{K}_0(\mathbf{Z}G)$ defined by $\widetilde{\chi}(F_1) = \sum_{i \geq 0} (-1)^i [\text{Tor } H_i(F_1)]$. In [5] we obtained the following:

Theorem. If G, Σ^{n+k} , and F_1 are as above and $n+k \geq 6$, k > n+2, then there exists a G-invariant $S^n \times D^k$ in Σ^{n+k} with fixed set F_1 if and only if $\widetilde{\chi}(F_1) = 0$ in $\widetilde{K}_0(\mathbf{Z}G)$.

As a result there is an equivariant splitting of

$$\Sigma^{n+k} = S^n \times D^k \cup D^{n+1} \times S^{k-1}$$

corresponding to the splitting of $F = F_1 \cup \operatorname{cl}(F - F_1)$, when $\widetilde{\chi}(F_1) = 0$.

In the present paper we restrict our attention to $G = \mathbf{Z}_p$ (p odd, prime) actions on $S^n \times D^k$. Suppose G acts smoothly on $S^n \times D^k$ with fixed set F^n , an n-manifold with boundary and a $\mathbf{Z}_{(p)}$ -homology m-sphere (0 < m < n). We determine conditions under which there exists a G-invariant homotopy n-sphere $\Sigma^n \subseteq S^n \times D^k$ (with nonzero degree (mod p)) such that Σ^G is a homotopy m-sphere $\Sigma^m \subseteq F^n$ (with nonzero degree (mod p)). Denote by ν the normal bundle to F^n in $S^n \times D^k$.

Theorem. Suppose $G = \mathbf{Z}_p$ (p odd prime) acts smoothly on $S^n \times D^k$ with fixed set F^n a manifold with boundary having the $\mathbf{Z}_{(p)}$ -homology of S^m (0 < m < n). Assume that:

- (1) $m \geq 5$, k > n+2, n > 2m+1,
- (2) m odd (which implies n odd),
- (3) $p \ge (n+3)/2$,
- (4) F is $\left[\frac{m}{2}\right]$ -connected and stably parallelisable (which implies that ν is trivial).