Classification of Quadratic Harmonic Maps of S^3 into Spheres

GABOR TOTH

§1. Introduction and statement of the result. In 1972 R. T. Smith posed the problem of classifying all harmonic maps $f: S^m \to S^n$, $m \geq 2$, between Euclidean spheres whose components are homogeneous (harmonic) polynomials of (fixed) degree k (cf. [2, 6, 7] and [3], Problem (4.4), p. 70). Full linear (k=1) harmonic maps are isometries of S^m and, by Calabi's rigidity theorem, any full k-homogeneous harmonic map of S^2 is a standard minimal immersion $f_{\lambda_k}: S^2 \to S^{2k}$ [1, 8, 9]. The object of this paper is to give a classification of full k-homogeneous harmonic maps in the first (nonrigid) range of m and k not covered by the results above, i.e., when m=3 and k=2.

Classification Theorem. Full quadratic (k = 2) harmonic maps of S^3 into S^n exist only if $2 \le n \le 8$ and $n \ne 3$. Moreover, if $f: S^3 \to S^n$ is such a map, then there exist $U \in O(4)$, $V \in O(n+1)$ and a symmetric positive definite matrix $B \in S^2(\mathbb{R}^{n+1})$ such that

$$V \circ f \circ U = B \circ f_n$$

where $f_n: S^3 \to S^n$ defined by

$$where \ f_n \colon S^3 \to S^n \ defined \ by$$

$$f_n(x,y,u,v) = \begin{cases} (x^2 + y^2 - u^2 - v^2, 2(xu - yv), 2(xv + yu)), \ [\text{Hopf map}] & n = 2 \\ (x^2 + y^2 - u^2 - v^2, 2xu, 2xv, 2yu, 2yv), & n = 4 \\ (x^2 - y^2, u^2 - v^2, 2xy, \sqrt{2}(xu + yv), \sqrt{2}(yu - xv), 2uv), & n = 5 \\ (\frac{1}{\sqrt{2}}(x^2 + y^2 - u^2 - v^2), \frac{1}{\sqrt{2}}(x^2 - y^2), \frac{1}{\sqrt{2}}(u^2 - v^2), & n = 6 \\ (x^2 - y^2, u^2 - v^2, 2xy, \sqrt{2}xu, \sqrt{2}xv, \sqrt{2}yu, \sqrt{2}yv, 2uv), & n = 7 \\ f_{\lambda_2}(x, y, u, v), \ [f_{\lambda_2} = \text{a standard minimal immersion}] & n = 8 \end{cases}$$
 For fixed n , the matrices B (corresponding to the various maps f) form an

For fixed n, the matrices B (corresponding to the various maps f) form an (open) convex body I_{f_n} lying in a finite-dimensional vector space. Finally, $I_{f_2} =$ point, $I_{f_4} = \text{segment}$, $I_{f_5} = 2 - \text{disk}$, $I_{f_6} = (\text{finite})$ solid cone, $\text{dim}\,I_{f_7} = 5$ and $\dim I_{f_8} = 10$.