Lipschitz Continuity of Solutions and Interfaces of the N-dimensional Porous Medium Equation

L. A. CAFFARELLI, J. L. VAZQUEZ & N. I. WOLANSKI

Introduction. We consider the Cauchy problem for the porous medium equation

$$(0.1) u_t = \Delta u^m, x \in \mathbf{R}^N, t > 0,$$

where m > 1 is a constant, with initial data

(0.2)
$$u(x,0) = u_0(x), \quad x \in \mathbf{R}^N.$$

We suppose that u_0 is a nonnegative, integrable function in \mathbf{R}^N that does not vanish identically and whose support is contained in the ball B = B(0,1) of center 0 and radius 1.

Equation (0.1) appears in a number of applications to describe the evolution of diffusion processes, in prticular the flow of a gas in a porous medium, cf. [M] or [A1]. There u stands for the density, $v = \frac{m}{m-1} u^{m-1}$ is the pressure and $-\nabla v = -(v_{x_1}, \dots, v_{x_N})$ is the local velocity of the gas. We remark that v satisfies the equation

$$(0.3) v_t = (m-1)v\Delta v + |\nabla v|^2.$$

Since equation (0.1) (or (0.3)) is degenerate at the points where u = v = 0, in general there are no classical solutions of (0.1), (0.2). Nevertheless there exists a unique weak solution u = u(x,t) of the Cauchy problem above satisfying

- (i) $u \in C([0,\infty); L^1(\mathbf{R}^N)) \cap L^\infty((\delta,\infty) \times \mathbf{R}^N)$ for every $\delta > 0$, and $u(x,t) \ge 0$ for every $(x,t) \in Q = \mathbf{R}^N \times (0,\infty)$,
- (ii) $u_t \Delta(u^m) = 0$ in $\underline{D}'(Q)$,
- (iii) $u(0) = u_0$,
- (iv) u is Hölder continuous in Q and $u \in C^{\infty}(\Omega)$, where Ω is the positivity set of u, $\Omega = \{(x,t) \in Q; u(x,t) > 0\}$.