Wiener Criterion and Potential Estimates for the Obstacle Problem

UMBERTO MOSCO

In ricordo di Giuliana

Introduction. Let ψ be an arbitrary given function, defined up to sets of Newtonian (external) capacity zero in \mathbb{R}^n , $n \geq 3$, taking its values in the extended reals $[-\infty, +\infty)$. We shall call such a ψ an *obstacle*.

We introduce the notion of regular point $x_0 \in \mathbb{R}^n$ of ψ as follows. We require that every local weak solution $u \in H^1(\Omega)$ of the obstacle problem

$$u \ge \psi$$
 q. e. in Ω , $Lu \ge 0$ in Ω , $(u - \psi)Lu = 0$

on some bounded open neighborhood Ω of x_0 in \mathbb{R}^n be (finite and) continuous at x_0 . By L we are denoting an arbitrary second order uniformly elliptic linear partial differential operator in divergence form, with bounded measurable coefficients in Ω ; see §1.6.

The first main result of this paper, Theorem 5.2, shows that the regular points of ψ do not depend on the specific choice of L and can be characterized by a condition of the type of the classical Wiener's criterion of potential theory. Such a condition requires one-sided level sets of ψ in balls $B_{\rho}(x_0)$ of radius ρ around x_0 not to become too "thin" as $\rho \to 0$, when measured by their relative capacities with respect to the balls B_{ρ} 's—see Definition 3.1 and §5.

Our second result is a "structural" potential estimate for an arbitrary local weak solution u of the obstacle problem above. This estimate, given by Theorems 6.1 and 6.2, can be seen as an analogue of the energy decay's estimates related to the so-called Saint-Venant's principle of linear elasticity [30, 33]. In particular, we estimate the modules of continuity of u at an arbitrary regular point of ψ

Our results will be formulated in terms of the Wiener modulus of ψ at x_0 which we introduce in §4. This modulus describes the relevant pointwise "variational" behavior of the obstacle, independently of any a priori smoothness requirement.

An interesting feature of our estimates is their "variational stability," in the sense, for instance, of so-called Γ -convergence of functionals, which will be exploited in further work; see [10].