The Space of m-dimensional Surfaces That Are Stationary for a Parametric Elliptic Functional

BRIAN WHITE

Introduction. In this paper we study the space of m-dimensional regular immersed surfaces in \mathbb{R}^n that are stationary with respect to m-dimensional area or, more generally, with respect to a parametric elliptic integrand Φ . This includes, for example, the case of surfaces of constant mean curvature c with respect to a Riemannian metric. Let M be a compact connected m-dimensional manifold with nonempty boundary. We regard two maps $f_1, f_2: M \to \mathbb{R}^n$ as equivalent (i. e., representing the same surface) if $f_1 = f_2 \circ u$ for some diffeomorphism $u: M \to M$ such that u(x) = x for all $x \in \partial M$. Let M be the set of equivalence classes [f] of $C^{j,\alpha}$ Φ -stationary immersions $f: M \to \mathbb{R}^n$. We prove (Theorem 3.3):

- (1) M is a Banach manifold.
- (2) The projection $\Pi: \mathcal{M} \to C^{j,\alpha}(\partial M, \mathbf{R}^n)$ defined by

$$\Pi([f]) = f | \partial M$$

is a smooth map of Fredholm index 0. (That is, the derivative of Π has a finite-dimensional kernel and a closed image of the same finite codimension.)

(3) Π is a diffeomorphism near [f] if and only if f has no non-tangential Jacobi fields that vanish on ∂M . ("Jacobi field" means "solution to the linearized Euler-Lagrange system"; see 1.4.)

We use these results to study generic properties of stationary surfaces. One useful notion of genericity in infinite-dimensional spaces is provided by Baire category. Frank Morgan [M1, M2, M3] introduced another by defining a measure on $C^{j,\alpha}(\partial M, \mathbb{R}^n)$. In this paper we give a third by defining what it means for a subset of a Banach space to have codimension $c \geq 1$. This notion is stronger than the other two in that any set of codimension ≥ 1 must be exceptional in the sense of Baire and also must have measure 0 according to Morgan's definition.

It follows immediately from (1), (2), and (3) and Smale's infinite dimensional version of Sard's theorem that for almost all (in the sense of Baire) $\gamma \in C^{j,\alpha}(\partial M, \mathbf{R}^n)$, $[f] \in \Pi^{-1}(\gamma)$ implies that [f] has no non-tangential