In General a Stochastic Operator Does Not Preserve a Measure

J. R. CHOKSI, S. J. EIGEN & V. S. PRASAD

Let S be the set of stochastic operators, i.e., positive contractions T on $L^1(X,\mathbf{M},\mu)$ satisfying $T^*\mathbf{1}=\mathbf{1}$, where (X,\mathbf{M},μ) is a Lebesgue probability space. Let S_λ be the subset of S consisting of those operators which preserve a σ -finite measure λ , $\lambda \sim \mu$. S is endowed with the strong operator topology; since S is closed in $\mathcal{L}(L^1,L^1)$, this makes it a Baire space. For details of the above, see Iwanik [Iw], also the book of Foguel [F] which uses a very different notation. Let S be the group of positive invertible isometries on $L^1(X,\mathbf{M},\mu)$, again with the strong operator topology; S is also a Baire space. These isometries can be identified in a natural way with the invertible nonsingular transformations (automorphisms) of (X,\mathbf{M},μ) : if T is an automorphism, the corresponding isometry T_T is given by $T_T f(x) = f(\tau^{-1}x) \frac{d\mu \circ \tau^{-1}}{d\mu}(x)$, and every positive invertible isometry arises in this way. (The strong operator topology is often called the coarse topology on the automorphisms.) We denote by M_λ the (closed) subgroup of S consisting of isometries (automorphisms) which preserve the S-finite measure S consisting of isometries (automorphisms) which preserve the S-finite measure S is a stochastic form.

- (a) S is the closed convex hull of G.
- (b) For each $\lambda \sim \mu$, S_{λ} is the closed convex hull of \mathcal{M}_{λ} .

Iwanik uses these results to extend known results on the residuality of ergodic automorphisms in \mathcal{G} and \mathcal{M}_{λ} to \mathcal{S} and \mathcal{S}_{λ} . A. Ionescu Tulcea [IT] has shown that $\bigcup_{\lambda \sim \mu} \mathcal{M}_{\lambda}$ is meager in \mathcal{G} : in general, an invertible isometry preserves no measure. We show here that $\bigcup_{\lambda \sim \mu} \mathcal{S}_{\lambda}$ is meager in \mathcal{S} : in general, a stochastic operator preserves no measure. Combining this with another result of Iwanik [Iw], we can prove even more; the set \mathcal{S}_{I} of stochastic operators admitting a subinvariant measure absolutely continuous with respect to μ is also meager in \mathcal{S} : in general, a stochastic operator admits no subinvariant absolutely continuous measure. This extends Ionescu Tulcea's result to \mathcal{S} and in a sense complements and completes the Baire category results of Iwanik. Our method is to use the result of Iwanik on