Equivalence of Slowly Decreasing Conditions and Local Fourier Expansions

R. MEISE, B. A. TAYLOR & D. VOGT

Let $\mathcal{E}_{\omega}(\mathbf{R})$ denote the Fréchet space of all ω -ultradifferentiable functions on \mathbf{R} in the sense of Beurling-Björck. We assume that the function $t\mapsto \omega(e^t)$ is convex on \mathbf{R} , define the weight function $p:\mathbf{C}\to \left[0,\infty\right[$ by $p(z):=|\mathrm{Im}\,z|+\omega(|z|)$ and denote by A_p the algebra of all entire functions f on \mathbf{C} which for some A>0 and B>0 satisfy the estimate

$$|f(z)| \le A \exp(Bp(z)), \quad z \in \mathbb{C}$$

Then it is well known that the Fourier-Laplace transform \wedge is an algebra isomorphism between the convolution algebra $(\mathcal{E}_{\omega}(\mathbf{R})'_b, *)$ and A_p . For $\mu \in \mathcal{E}_{\omega}(\mathbf{R})'$ one defines the convolution operator T_{μ} on $\mathcal{E}_{\omega}(\mathbf{R})$ by

$$T_{\mu}(\varphi): x \mapsto \langle \mu_{y}, \varphi(x-y) \rangle.$$

Extending results of Ehrenpreis [7] and Berenstein and Taylor [2] we prove that for $\mu \in \mathcal{E}_{\omega}(\mathbf{R})'$, the following assertions are equivalent:

- (1) T_{μ} is surjective,
- (2) $\hat{\mu}$ is slowly decreasing in A_p in the sense of Berenstein and Taylor [2],
- (3) there exists $A \ge 1$ such that for each $x \in \mathbf{R}$ there exists $t \in \mathbf{R}$ with $|t x| \le A\omega(x)$ and $|\hat{\mu}(t)| \ge \exp(-A\omega(t))$.

Then we use the estimates which have been derived in proving that (3) implies (2), together with an idea of Meise [14], to show that for a surjective convolution operator T_{μ} on $\mathcal{E}_{\omega}(\mathbf{R})$ with an infinite dimensional kernel, "local" zero solutions admit a local Fourier expansion. Roughly speaking, this means the following: There exists a Schauder basis $\{f_j\}_j$ of $\ker T_{\mu}$ consisting of exponential polynomials such that for each $\rho > 0$ there exist $r > \rho$ and $h_j \in \mathcal{E}_{\omega}[-r,r]'$, such that for each R > r which is sufficiently large and each $\varphi \in \mathcal{E}_{\omega}[-R,R]$ with $T_{\mu}(\varphi)|[-r,r] \equiv 0$, we have an expansion

$$\varphi(x) = \sum_{j=1}^{\infty} f_j(x) h_j(\varphi), \qquad x \in [-\rho, \rho],$$