Behavior of Functions in BMOA and VMOA near a (2n-2)-dimensional Submanifold

WADE RAMEY & PAULA RUSSO

Let B_n denote the open unit ball in \mathbb{C}^n . In several recent papers ([A], [AR], and [R]), the behavior of functions in $\operatorname{BMOA}(B_n)$ near various submanifolds of ∂B_n has been studied. In particular, in each of these papers, certain n (real)—dimensional submanifolds $M \subset \partial B_n$ and functions $f \in \operatorname{BMOA}(B_n)$ have been produced with the property that f fails to have a finite radial limit at every point of M.

It seems natural to look for a submanifold of ∂B_n with the largest possible dimension for which the above can be done. In this paper we produce such an f and M, or at least come close to it—our techniques force us to replace "every" with "almost every". More precisely, Theorem 1 below shows that for the submanifold $M = \frac{1}{\sqrt{2}} \left(\partial B_1 \times \partial B_{n-1}\right)$, a (2n-2)-dimensional submanifold of ∂B_n , there exists an $f \in \text{BMOA}(B_n)$ (and even in $\text{VMOA}(B_n)$) which fails to have a finite radial limit at H_{2n-2} —a.e point of M, where H_{2n-2} denotes (2n-2)-dimensional Hausdorff measure on M. In fact, this f will have the property that it maps H_{2n-2} —a.e radius ending at a point of M onto a dense subset of \mathbb{C} .

As in [A], [AR], and [R], the desired $f \in BMOA$ is obtained after first proving a composition operator—theoretic result relating Bloch functions with functions in BMOA; here we will be following the method of Ahern in [A]. However, unlike these earlier papers, where the authors relied on the existence of one variable functions displaying radial pathology, we here need to construct certain functions holomorphic in B_n , n > 1, exhibiting bad radial behavior almost everywhere on ∂B_n ; see Theorem 3.

We should point out that it is not just the existence of sets $M \subset \partial B_n$ of large Hausdorff dimension having the properties above which is of interest here. Indeed, it is known [S] that there are peak sets K for the ball algebra having Hausdorff dimension 2n-1. For such a K there even exists an $f \in H^{\infty}(B)$ which fails to have radial limits (or limits along any curve) at every point of K. But there exists no such $f \in H^{\infty}(B_n)$ with this property relative to our submanifold