Some Exotic Dihedral Actions on Spheres

JAMES F. DAVIS & TAMMO TOM DIECK

A representation form is an action of a group G on a sphere X such that the fixed point set X^H of each subgroup $H \subset G$ is again a sphere. A guiding question is the extent to which general forms resemble those given by linear actions. In this note we study representation forms of D_{2m} , the dihedral group of order 2m.

The first major result was due to J. Milnor [1957]: the dihedral group cannot act freely on the sphere. Thus a natural question arises: if the dihedral group acts on a sphere, what can be said about the fixed point sets of the various subgroups?

Natural linear actions of D_{2m} on S^{2n-1} are given by considering D_{2m} as a subgroup of O(2) as symmetries of the regular m-gon, and then embedding D_{2m} diagonally in $O(2) \times \cdots \times O(2) \subset O(2n)$. D. Montgomery-C.T. Yang [1981] showed that general dihedral actions resemble linear actions in the following sense:

Theorem. Let X be a smooth representation form of D_{2m} (m odd, m > 1) of dimension 2n-1 so that $X^H = \emptyset$, where H is the cyclic subgroup of order m. Then for any two elements g, $h \in D_{2m}$ of order 2, $\dim X^g = n-1 = \dim X^h$ and the linking number $\ell(X^g, X^h)$ is odd.

Of course in the linear examples X^g and X^h are disjoint linearly embedded subspheres so the linking number is 1. A natural question posed by S. Cappell (see Schultz [1985], p. 590) is whether there exist D_{2m} -actions with exotic linking numbers.

We now outline the construction of exotic actions. The starting point of this investigation is to consider the symmetry properties of Brieskorn varieties.