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The importance of maximal and constant mean curvature spacelike hyper-
surfaces in general relativity has been emphasized by a number of authors; see,
for example, [CFM], [S], and references therein. These hypersurfaces are conve-
nient as initial surfaces for the Cauchy problem in arbitrary spacetimes and for
studying the propagation of gravitational radiation, respectively. Results con-
cerning existence and uniqueness for this type of hypersurfaces are obtained in
[B], [CB], [CFM], [N], [S], where various conditions are imposed on the ambient
spacetime.

When the ambient spacetime is Lorentz—Minkowski space R{""l and the

spacelike hypersurface is given as a graph of a certain function u, the condition
of constant mean curvature H is written in terms of u as follows:

(1-|Vul?)Au+ (Viu)(Vu,Vu) = nH(1 - |Vu|?)3/2, |Vul? < 1,

where V, V2 and A denote the usual gradient, Hessian and Laplacian of R"
respectively. If H = 0, it was proved by Calabi [C] that, for n < 4, the only
entire solutions to that equation are linear. Later, Cheng and Yau [CY] showed
that the same holds for arbitrary n. The case H # 0, which has a completely
different behaviour, was extensively studied by Treibergs in [T].

When the ambient is de Sitter space S**!, Goddard [G] conjectured that
complete spacelike hypersurfaces with constant mean curvature H must be um-
bilical. Later, Akutagawa [A] has proved that Goddard’s conjecture is true when
H? < 4(n—1)/n?,if n > 2, and when H? < 1, if n = 2. Moreover, in that work
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