Asymptotic Behavior of C_0 -Semigroups in B-Convex Spaces

VOLKER WROBEL

1. Introduction. Suppose $A: X \supseteq D(A) \to X$ is the generator of a C_0 -semigroup $(U_A(t))_{t \ge 0}$ on a complex Banach space X. Let $\sigma(A;X)$ denote the spectrum of A and let $R(z,A) := (z-A)^{-1}$ be the resolvent defined on the resolvent set $\rho(A;X) = \mathbb{C} \setminus \sigma(A;X)$. If

$$(1.1) s(A) := \sup\{\operatorname{Re}(z) : x \in \sigma(A; X)\}$$

denotes the *spectral bound* of A, we subdivide the half-plane $\text{Re}(z) \geq s(A)$ according to the following growth abscissas of $R(\cdot, A)$: For $m \in \mathbb{N} \cup \{0\}$ let

$$(1.2) \quad s_m(A) := \inf\{s > s(A) : ||R(a+ib)|| = O(|b|^m) \quad \text{as } |b| \to \infty \text{ for } a \ge s\}$$

denote the abscissa of m^{th} order growth of $R(\cdot, A)$ along parallels to the imaginary axis.

In [9] M. Slemrod essentially proves the following:

Theorem 1.1. Let $(U_A(t))_{t\geq 0}$ denote a C_0 -semigroup on a complex Banach space X and let $\alpha \in \rho(A;X)$. Then for every $\varepsilon > 0$, there is an $M_{\varepsilon} > 0$ such that

(1.3)
$$||U_A(t)R(\alpha,A)^{m+2}|| \le M_{\varepsilon} e^{t(s_m(A)+\varepsilon)}.$$

Since $D(A^m) = R(\alpha, A)^m X$, (1.3) says that the growth abscissa of $R(\cdot, A)$ determines the asymptotic behavior of certain classical solutions of the Cauchy-problem associated with the semigroup. It is the purpose of the present paper to improve (1.3) as follows:

- (i) If X is a Hilbert space, then m+2 can be replaced by m. For m=0 this is an immediate consequence of Gearhart's theorem [3], and we mention that for $m \geq 0$ this result has also been obtained by G. Weiss [11] using different methods.
- (ii) If X is a B-convex space (for a definition see below), e.g., if X is uniformly convex, then m+2 can be replaced by m+1 and this will turn out to be the best possible constant outside of the class of Hilbert spaces. Consequently