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ABSTRACT. We discuss conditions pertaining to the rate of
decay of bounded sequences which almost characterize the
space of multipliers from L?(G) to LY(G), denoted by M(2,q),
for G a compact abelian group and ¢ > 2. Specific examples of
multipliers are constructed to illustrate that M(2,q) S M(2,7)
if ¢ > r. The spectrum of a multiplier ¢ € M(2,p), for p > 2,
as an operator from LP to L? is seen to be {cp(@)}d. It is
shown that for some values of p and ¢ there are examples of
multipliers from LP to certain quotient spaces of L? which
are not the restrictions of multipliers from LP to LY. Quasi-
idempotent multipliers from H!(T) to HP(T) for p > 1 are
characterized.

0. Introduction. Let G be a compact abelian group and let I" be its discrete
dual group. Let 1 < p, ¢ < 0o. A function ¢ : I' — C is called an (L?,L9)
multiplier if for every f € LP(G), M,f € L%(G) where by M,f we mean the
function whose Fourier transform satisfies

(Mo )" (x) = e(x)f(x)

for every x € I'. The space of (L?,L?) multipliers will be denoted by M(p,q).
It is well known that M(p,q) = M(q',p') if 11—,+;1,- =1 and %+ q—l, = 1. Also,
M(2,2) =£>° C M(p,p)ifp # 2, M(1,1) = M(G) and M(1,p) = LP(G) if p > 1.
For proofs of these results see [13] and [3]. For other choices of p and ¢ effective
characterizations of M(p,q) are unknown.

The main purpose of this paper is to describe and apply new conditions,
some necessary, others sufficient, which almost characterize the (L?,L9) multi-
pliers. From these we obtain, for example, a characterization of quasi-idempotent
multipliers. The spectrum of ¢ € M(2,p), p > 2, viewed as an operator from
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