$Properties \ and \ Examples \ of \ (L^p,L^q) \ Multipliers$

KATHRYN E. HARE

ABSTRACT. We discuss conditions pertaining to the rate of decay of bounded sequences which almost characterize the space of multipliers from $L^2(G)$ to $L^q(G)$, denoted by M(2,q), for G a compact abelian group and q>2. Specific examples of multipliers are constructed to illustrate that $M(2,q) \subseteq M(2,r)$ if q>r. The spectrum of a multiplier $\varphi \in M(2,p)$, for p>2, as an operator from L^p to L^p is seen to be $\left\{\varphi(\widehat{G})\right\}^{cl}$. It is shown that for some values of p and q there are examples of multipliers from L^p to certain quotient spaces of L^q which are not the restrictions of multipliers from L^p to L^q . Quasidempotent multipliers from L^q to L^q .

0. Introduction. Let G be a compact abelian group and let Γ be its discrete dual group. Let $1 \leq p$, $q \leq \infty$. A function $\varphi : \Gamma \to \mathbb{C}$ is called an (L^p, L^q) multiplier if for every $f \in L^p(G)$, $M_{\varphi}f \in L^q(G)$ where by $M_{\varphi}f$ we mean the function whose Fourier transform satisfies

$$(M_{\varphi}f)^{\wedge}(\chi) = \varphi(\chi)\hat{f}(\chi)$$

for every $\chi \in \Gamma$. The space of (L^p, L^q) multipliers will be denoted by M(p,q). It is well known that M(p,q) = M(q',p') if $\frac{1}{p} + \frac{1}{p'} = 1$ and $\frac{1}{q} + \frac{1}{q'} = 1$. Also, $M(2,2) = \ell^{\infty} \subsetneq M(p,p)$ if $p \neq 2$, M(1,1) = M(G) and $M(1,p) = L^p(G)$ if p > 1. For proofs of these results see [13] and [3]. For other choices of p and q effective characterizations of M(p,q) are unknown.

The main purpose of this paper is to describe and apply new conditions, some necessary, others sufficient, which almost characterize the (L^p, L^q) multipliers. From these we obtain, for example, a characterization of quasi-idempotent multipliers. The spectrum of $\varphi \in M(2,p)$, p > 2, viewed as an operator from