Rank-2 Vector Bundles on a Surface with Many Spread Sections

EDOARDO BALLICO

In [B] we introduced the following numerical invariant s(E) for a vector bundle E on an integral variety V, $\dim(V) = \operatorname{rank}(E)$, E spanned by its globall sections. This invariant measures how many and how spread (from a birational point of view) are the sections of E. Set $n := \dim(V)$, $t := c_n(E)$, and assume t>0. Assume (as always in this paper) that we work over an algebraically closed field **F** with char(**F**) = 0. By Bertini's theorem there is a dense open subset Uof $H^0(V,E)$ such that, for every $s \in U$, the locus of zeroes $(s)_0$ is formed by t smooth points of V. We obtain a morphism $g: U \to S^t(V)$ (symmetric power). Set $s(E) := \dim(\operatorname{Im}(g))$. Since E is spanned, we have $n \leq s(E) \leq nc_n(E)$. Recently ([LS], [W], [B], [L]) many authors were interested in the classification of ample spanned vector bundles with low invariants. In [B] we considered this problem, for instance, when n=2, c_2 is low and s(E) is maximal or minimal; sometimes we did not need the assumption "E ample", sometimes we needed the assumption "det(E) very ample". Now we consider only the case n=2. We fix a smooth, connected, projective surface S and rank-2 vector bundle E on S, E spanned by its global sections. In Section 1 we consider a few properties of (S,E) under the assumption that $s(E) = 2c_2(E) - 1$ and $c_2(E) > 2$; for instance, we show (1.1) that S is rational. In Section 2 we classify the ample spanned E with det(E) very ample, $s(E) = 2c_2(E)$, and $4 \le c_2(E) \le 7$. In Section 5 we do the same when $s(E) = 2c_2(E) - 1$. In Section 4 we show that there is no ample spanned E with $c_2(E) = 3$, s(E) = 5. In Section 3 we classify spanned vector bundles E with $c_2(E) = 7$ and s(E) = 14. In Section 6 we prove a few results for bundles with $s(E) = 2c_2(E) - 2$: if $c_2(E) \ge 4$, q(S) = 0.

0. Notations. A sheaf on a projective variety is called spanned if it is generated by its global sections. We will write \mathcal{O} , K (the canonical line bundle) when there is no danger of misunderstanding. We will often consider a line bundle M on a smooth surface Y as a (class of a) divisor on Y; in particular, we will write |M| for the associated complete linear system and $M \cdot N$ or MN for the intersection numbers of two line bundles or divisors. Let $c: S \to X$ be a birational