Locally Continuous Operators, II

G.D. ALLEN

1. Introduction. In this paper we consider bounded linear operators $T \in \mathcal{B}(L_p[0,1], L_q[0,1])$ which satisfy special norm conditions when restricted to functions of small support. In particular, for any measurable set $\Delta \subset [0,1]$ we denote by $|\Delta|$ its Lebesgue measure and by P_{Δ} the projection operator induced by the indicator function χ_{Δ} . Thus for $f \in L_p[0,1]$, $P_{\Delta}f = \chi_{\Delta}f$.

Definition 1.1. Let $\varphi(\cdot)$ and $\psi(\cdot)$ be any two positive nondecreasing continuous functions on [0,1]. Let $T \in \mathcal{B}(L_p[0,1],L_q[0,1])$. We say that

(1) T is left locally continuous if for all measurable subsets $\Delta \subset [0,1]$

$$(1.1) $||TP_{\triangle}||_{p \to q} \le \varphi(|\triangle|);$$$

(2) T is right locally continuous if for all measurable subsets $\triangle \subset [0,1]$

and

(3) T is locally continuous if for all measurable subsets \triangle , $\triangle' \subset [0,1]$

(1.3)
$$||P_{\triangle'}TP_{\triangle}||_{p\to q} \le \varphi(|\triangle|)\psi(|\triangle'|).$$

The terminology left, right, etc. is due to the result in Allen [1], Theorem 6, which for p=q=2 asserts that when in addition φ and ψ are continuous with $\varphi(0)=\psi(0)=0$, then a unitary equivalent of T is

- (i) left locally continuous if and only if 0 is in the left essential spectrum of T,
- (ii) right locally continuous if and only if 0 is in the right essential spectrum of T, and
- (iii) locally continuous if and only if 0 is in the reducing essential spectrum of T. See Salinas [17] for appropriate definitions.

In this paper we continue our study of these operators. In Section 2 we extend further the mapping properties of such operators extending the results in Allen [1] from the case when $\varphi(s)$ and $\psi(s)$ are powers (s^{α}) to more general functions. These type of results (for powers) have also been studied in a general context by Pisier [15] in connection with proving the equivalence of factorizations