Quasidiagonal Operators, Approximation, and C^* -Algebras

K. R. DAVIDSON, D. A. HERRERO & N. SALINAS

Introduction. An operator T, acting on a complex, separable, infinite dimensional Hilbert space \mathcal{H} , is called *quasidiagonal* [12] if there is an increasing sequence $\{P_n\}_{n=1}^{\infty}$ of finite rank orthogonal projections such that

$$P_n \to 1$$
 strongly, and $||TP_n - P_nT|| \to 0 \ (n \to \infty)$.

T is called quasitriangular if there is a sequence $\{P_n\}_{n=1}^{\infty}$ as above such that

$$||(1-P_n)TP_n|| \to 0 \ (n \to \infty);$$

T is biquasitriangular if both T and its adjoint T^* are quasitriangular. It is easily seen that a quasidiagonal operator is biquasitriangular. Moreover, biquasitriangular operators are the norm-limits of the algebraic operators [30] (see also [14, Chapter 3]), and therefore every quasidiagonal operator is the norm-limit of algebraic ones.

Problem 1.1. Is every quasidiagonal operator the norm-limit of algebraic quasidiagonal operators?

The partial answer to this and closely related problems are a good indication of what we really know about the meaning of quasidiagonality. Our main result in the positive direction says that if T is quasidiagonal, the C^* -algebra generated by $\tilde{1} = \pi(1)$ and $\tilde{T} = \pi(T)$ admits a faithful unital *-representation ρ on a separable space \mathcal{H}_p such that $\rho(\tilde{T})$ is quasidiagonal, and the essential spectrum of T does not disconnect the plane; then T is, indeed, the norm-limit of algebraic quasidiagonal operators. (Here $\pi : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})/(\mathcal{K}(\mathcal{H}))$ denotes the canonical projection from the algebra $\mathcal{L}(\mathcal{H})$ of all (bounded linear) operators acting on \mathcal{H} , onto the quotient Calkin algebra $\mathcal{L}(\mathcal{H})/\mathcal{K}(\mathcal{H})$, where $\mathcal{K}(\mathcal{H})$ denotes the ideal of all compact operators.)

Several other results will be interpolated in the following survey.