## Orthogonal Projections, Riesz Capacities, and Minkowski Content

## PERTTI MATTILA

ABSTRACT. Let G(n,m) be the Grassmannian manifold of m-dimensional linear subspaces of  $\mathbf{R}^n$ , let  $\gamma_{n,m}$  be the orthogonally invariant probability measure on G(n,m), and for  $V \in G(n,m)$  let  $P_V : \mathbf{R}^n \to V$  denote the orthogonal projection. We shall show, for example, that for any Borel set  $E \subset G(n,m)$ 

$$\int \mathcal{H}^m(P_V E) \, d\gamma_{n,m} \ge c \, C_m(E)$$

where  $\mathcal{H}^m$  is the m-dimensional Hausdorff measure and  $C_m$  the capacity corresponding to the Riesz kernel  $|x|^{-m}$ . In the case  $m=n-2\geq 1$  this gives for the Lebesgue measure  $\mathcal{L}^n$  the inequality

$$\int \mathcal{H}^{n-2}(P_V E) \, d\gamma_{n,n-2} V \ge c \, \mathcal{L}^n(E)^{(n-2)/n}$$

with the best possible constant c. We also study relations between Hausdorff measures and upper Minkowski contents of the projections.

1. Introduction. For simplicity in this introduction, I shall consider only projections of plane sets on lines, although the results of the paper will be established for projections of sets in  $\mathbf{R}^n$  on m-dimensional subspaces. For  $\vartheta \in [0,\pi)$  let  $L_{\vartheta}$  be the line through the origin in  $\mathbf{R}^2$  forming an angle  $\vartheta$  with the positive x-axis, and let  $p_{\vartheta}: \mathbf{R}^2 \to L_{\vartheta}$  be the orthogonal projection. Let  $E \subset \mathbf{R}^2$  be a Borel set. Our basic estimate is (see Theorem 3.2)

(1.1) 
$$\pi^2 \left( \iint |x - y|^{-1} d\mu x d\mu y \right)^{-1} \le \int_0^\pi |p_{\vartheta}(E)| d\vartheta$$