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1. Introduction. If f(z) and its derivatives of order less than or equal to ¢
are in LP(R™) , then f(z) is in LY(R"), where % = % —% > 0. In fact, we have

L
1£1lg < C - 1V*lp-

k=0

This is Sobolev’s inequality. It also applies to certain bounded domains D
in R™ . This paper examines to what extent the derivatives of order k£ < £ can be
omitted from the sum, with additional requirements on f. These modifications
must at least rule out constant functions, of course.

For example, if we assume that B C D, where D is a convex bounded subset
of R™, and that f|B =0, then

Ifllg < C-IVESllp-

The constant C depends on p, q, n, B, and D. We will estimate its depen-
dence on |B| and on d = diam(D), using techniques similar to both the level
curve approach (see Osserman [9]), and the use of Riesz potentials (see Stein
[12]). A second basic question arises; if A, B C D, a bounded convex set, and
f|B =0, and f|A = 1, then what is a lower bound for ||V*f||,? The dual prob-
lem is to find an upper bound for ||M4p(2)||,r where % + 517 =1and Myp(z) as

defined in Section 2 is, roughly speaking, the measure of the line segments ab,
a € A, b € B which contain z. This function is the natural generalization of the
Riesz potentials for the problems at hand.

Theorem 2.3 answers this dual question. It provides the crucial estimates
needed in the proof of the main theorem, Theorem 3.1, which is a version of
the Bramble-Hilbert lemma about polynomial approximation in Sobolev spaces.
This work originated in an attempt to find the largest possible exponent of |B|
in that result, and the one given there is not simple, but is indeed sharp.
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