On the Existence of Nonclassical Solutions for Two Classes of Fully Nonlinear Elliptic Equations

JOHN I. E. URBAS

ABSTRACT. We prove the existence of nonsmooth Lipschitz continuous solutions for two classes of fully nonlinear second order equations. The first is a class of equations involving the $m^{\rm th}$ elementary symmetric function of the Hessian and the second comprises the equations of prescribed $m^{\rm th}$ mean curvature, where in each case $m \geq 3$. This generalizes a result of Pogorelov for the Monge-Ampère equation.

1. Introduction. In [25], [26] Pogorelov constructed examples showing that convex generalized solutions of Monge-Ampère equations of the form

$$(1.1) det D^2 u = g(x)$$

in a domain $\Omega \subset \mathbf{R}^n$, $n \geq 3$, need not be of class C^2 , even if g is positive and of class C^{∞} , or even analytic. Our purpose here is to show that this absence of classical regularity is not confined to equations of Monge-Ampère type, but in fact occurs for a larger class of nonuniformly elliptic equations.

We shall be concerned with two classes of equations. The first of these comprises equations of the form

$$(1.2) F_m(D^2u) = g(x,u,Du),$$

where F_m is defined by

(1.3)
$$F_m(D^2u) = S_m(\lambda_1, \dots, \lambda_n)^{1/m}.$$

Here $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of D^2u and for each integer $m, 1 \leq m \leq n$, S_m is the m^{th} elementary symmetric function defined by

(1.4)
$$S_m(\lambda_1, \dots, \lambda_n) = \sum_{1 \le i_1 < \dots < i_m \le n} \lambda_{i_1} \cdots \lambda_{i_m}.$$