Lipschitz Approximation by Harmonic Functions and Some Applications to Spectral Synthesis

JOAN MATEU & JOAN OROBITG

ABSTRACT. For $0 < s \le 1$, we characterize those compact sets X with the property that each function harmonic in $\overset{\circ}{X}$ and satisfying a little \mathbf{o} Lipschitz condition of order s is the limit in the Lipschitz norm of order s of functions harmonic on neighbourhoods of X. As an application of the methods we give a spectral synthesis result in the space of locally integrable functions whose laplacian belongs to $B^p(\mathbb{R}^d)$, the containing Banach space of the Hardy space $H^p(\mathbb{R}^d)$.

0. Introduction. Let X be a compact subset of \mathbb{R}^d and let $\Lambda^s(X)$, 0 < s < 1, be the usual Banach space of Lipschitz functions of order s on X. That is, $f \in \Lambda^s(X)$ if and only if

$$||f||_s = \sup\{|f(x) - f(y)| |x - y|^{-s} : x, y \in X, x \neq y\} < \infty.$$

If $\| \|_{\infty}$ is the supremum norm on X, $\|f\|_{\infty} + \|f\|_{s}$ is a Banach space norm on $\Lambda^{s}(X)$. An important role in what follows will be played by the space $\lambda^{s}(X)$ which is the set of functions f in $\Lambda^{s}(X)$ satisfying $|f(x) - f(y)| = o(|x - y|^{s})$ as $|x - y| \to 0$. Alternatively $\lambda^{s}(X)$ can be described as the closure in $\Lambda^{s}(X)$ of $C^{\infty}(\mathbb{R}^{d})_{|X}$.

We are interested in the problem of understanding the space $H^s(X)$, the closure in $\Lambda^s(X)$ of $\{f_{|X}: f \text{ is harmonic on some neighbourhood of } X\}$. There are two obvious necessary conditions for $f \in H^s(X)$: f must be harmonic on $\overset{\circ}{X}$, and f must belong to $\lambda^s(X)$. If we set

$$h^s(X) = \lambda^s(X) \cap \left\{ f : \Delta f = 0 \text{ on } \mathring{X} \right\}$$

we then have $H^s(X) \subset h^s(X)$ and it turns out that the above inclusion can be strict. Thus the problem arises of characterizing those X for which $H^s(X) =$