Homeomorphic Disks in the Spectrum of H^{∞} ## P. GORKIN, H.-M. LINGENBERG, R. MORTINI ABSTRACT. In the first part of this paper we give several descriptions of those analytic disks P(m) in the spectrum of H^{∞} which are homeomorphic to the unit disk. The main result will be a complete characterization of the zero sets of interpolating Blaschke products as well as the interpolating sequences on these homeomorphic disks. In the second part we show that the Hoffman map L_m associated with a homeomorphic disk has a homeomorphic extension to the set G of all nontrivial points in H^{∞} . Finally, in the third section, we answer several questions of Guillory on the characterization of thin Blaschke products. **0.** Introduction. Let H^{∞} be the Banach algebra of all bounded analytic functions in the open unit disc $\mathbf{D}=\{z\in\mathbf{C}:|z|<1\}$ and let $M(H^{\infty})$ denote its maximal ideal space. For $m,\ x\in M(H^{\infty})$, let $\rho(m,x)=\sup\{|f(x)|:f\in H^{\infty},\ f(m)=0,\ \|f\|=1\}$ denote the pseudohyperbolic distance of the points m and x in $M(H^{\infty})$. By Schwarz-Pick's lemma $\rho(z,w)=\left|\frac{z-w}{1-\bar{z}w}\right|$ if $z,\ w\in\mathbf{D}$. Let $$P(m) = \{x \in M(H^{\infty}) : \rho(m,x) < 1\}$$ be the Gleason part of $m \in M(H^{\infty})$. Defining m to be equivalent to $x, m \sim x$, if $\rho(m,x) < 1$, one can show ([5], p. 402) that \sim is an equivalence relation in $M(H^{\infty})$. Thus the Gleason parts of two points are either disjoint or equal. A Gleason part P is called an analytic disk if there exists a continuous, bijective map L of \mathbf{D} onto P such that $\hat{f} \circ L$ is analytic in \mathbf{D} for every $f \in H^{\infty}$, where \hat{f} denotes the Gelfand transform of $f \in H^{\infty}$. In his famous paper [11] K. Hoffman showed that any Gleason part P(m) in $M(H^{\infty})$ is either a single point or an analytic disk. Moreover, the latter occurs if and only if $m \in \mathbf{D}$ or