Homogeneous Complex Monge-Ampère Equations and Algebraic Embeddings of Parabolic Manifolds ## Robert L. Foote ABSTRACT. Let M^n be a Stein manifold, and let $\tau: M \to [0,R^2)$, $0 < R \le \infty$, be a strictly plurisubharmonic exhaustion. The pair (M,τ) is said to be strictly parabolic at infinity if $u = \log \tau$ satisfies the Monge-Ampère equation $(\partial \bar{\partial} u)^n \equiv 0$ outside some compact set K. Additionally, (M,τ) is of Reinhardt type if τ can be written locally as a Reinhardt function on M-K. The set M-K admits a Monge-Ampère foliation in a well-known way. With an assumption on the holomorphic twist of this foliation when $R = \infty$ we prove a curvature estimate, which, via a theorem due to Demailly, implies that M embeds algebraically into \mathbb{C}^{2n+1} . When $R \le \infty$ and $K = \tau^{-1}(0)$ we prove, under a weaker regularity assumption than usual, that M is biholomorphic to the ball in \mathbb{C}^n of radius R. ## 1. Introduction. **Outline.** Let M be a connected, complex manifold of dimension n, and let $\tau: M \to [0, R^2)$, $0 < R \le \infty$, be a strictly plurisubharmonic (spsh) exhaustion. Stoll [S2] defined a strictly parabolic manifold to be one in which the function $u = \log \tau$ satisfies the homogeneous Monge-Ampère equation $(\partial \bar{\partial} u)^n = 0$ on $M - \tau^{-1}(0)$. He proved that if τ is C^{∞} , the only example is the R-ball in \mathbb{C}^n with the standard exhaustion $\tau_0(z) = |z|^2$. Burns [B1] gave an alternate proof of this and, using a curvature estimate, drew the same conclusion when τ is C^5 and $R = \infty$. It is unknown if the conclusion holds when τ is C^5 and $R < \infty$. In this paper we follow a generalization of the notion of strictly parabolic manifold due to Burns [B2], [F2]. Let M, τ , and u be as above with $R = \infty$, except that $(\partial \bar{\partial} u)^n = 0$ is required to hold only outside some compact subset of M. We will say that M, together with τ , is *strictly parabolic at infinity*.