On Almost Isospectral Manifolds

JYH-YANG WU

ABSTRACT. In this note, we introduce a new notion of α -isospectral manifolds. Then we prove the rigidity theorem on S^4 , S^5 and CP^n . As a special case, we have the isospectral rigidity on CP^n for $n \geq 4$.

- 1. Introdution. Let (M,g) be a closed Riemannian manifold. The Laplace-Beltrami operator Δ acting on functions on M has a discrete spectrum: $\operatorname{Spec}(M,g): 0=\lambda_0<\lambda_1\leq \lambda_2\leq \cdots \leq \lambda_m\nearrow\infty$. We shall say that two Riemannian manifolds (M,g) and (\bar{M},\bar{g}) are isospectral if $\operatorname{Spec}(M,g)=\operatorname{Spec}(\bar{M},\bar{g})$. One of the basic problems in the spectrum theory is the following: Is a Riemannian manifold determined up to isometry by its spectrum? In general, this is not true. Milnor [BGM] gave an example of two 16-dimensional flat tori which are isospectral but not isometric. This is the first example of non-isometric isospectral manifolds. Other examples have been found afterwards: 5-dimensional lens spaces and compact manifolds with constant curvature -1. However, in some cases, the spectrum do determine the manifolds. For instance,
- (1) Two 2-dimensional isospectral flat tori are isometric ([BGM]).
- (2) For $n \leq 5$, if (M,g) is isospectral to $(S^n, g_{\operatorname{can}})$ (resp. $(RP^n, g_{\operatorname{can}})$), then (M,g) is isometric to $(S^n, g_{\operatorname{can}})$ (resp. $(RP^n, g_{\operatorname{can}})$) ([BGM], [T1]).
- (3) For $n \leq 6$, a Kähler manifold (M,g) has the same spectrum as the complex projective space $\mathbb{C}P^n$ with the Fubini-Study metric g_0 , then (M,g) is holomorphically isometric to $(\mathbb{C}P^n,g_0)$ ([T1]).

In this note, we study the perturbation phenomena of these cases. The Weyl's asymptotic formula says that $\lambda_m \sim c_n \mathrm{Vol}(M) m^{2/n}$ where n is the dimension of M and c_n is a universal constant depending only on n. It is natrual to ask the following: In the above examples (1), (2) and (3), can we relax the conditions? Namely, if we perturb the metrics on M such that the eigenvalues $\lambda_m = \lambda_m^{\mathrm{new}}$ and $\bar{\lambda}_m = \lambda_m^{\mathrm{old}}$ of the Laplacian operators associated to the new and old metrics only differ by a lower term than $m^{2/n}$, can we still have the rigidity result? In Section 2, we shall see that if λ_m and $\bar{\lambda}_m$ differ by a fixed constant, then this is not true. In Section 3, we show that for some cases, if λ_m and $\bar{\lambda}_m$