A Fixed Point Property for the Lorentz Space $L_{p,1}(\mu)$

N. L. CAROTHERS, S. J. DILWORTH C. J. LENNARD & D. A. TRAUTMAN

ABSTRACT. Let (X, Σ, μ) be a σ -finite measure space. Our main result is that every non-expansive mapping from a weak-star compact convex subset of $L_{p,1}(\mu)$ into itself has a fixed point. We prove this by showing that $L_{p,1}(\mu)$ has the weak-star uniform Kadec-Klee property.

1. Introduction. Let (X,Σ,μ) be a σ -finite measure space. For a μ -measurable function f we define the distribution of f by $d_f(t) = \mu(\left\{x:|f(x)|>t\right\}),\ 0< t<\infty$, and the decreasing rearrangement of f by $f^*(t)=\inf\{s>0:d_f(s)\leq t\}$. For $1< p<\infty$, the Lorentz space $L_{p,1}(\mu)$ is the Banach space of all (equivalence classes of) μ -measurable functions f under the norm $\|f\|=\int_0^\infty f^*(t)\,d(t^{1/p})$. (Throughout, we shall always take $1< p<\infty$.) $L_{p,1}(\mu)$ is a dual space whose predual is the closure in $L_{p,1}(\mu)^*=L_{p',\infty}(\mu)$ (where $\frac{1}{p}+\frac{1}{p'}=1$) of the μ -integrable simple functions, under the usual pairing $(f,g)=\int_X fg\,d\mu$.

Let C be a closed bounded convex subset of a Banach space $(E, \|\cdot\|)$. A map $T: C \to C$ is said to be nonexpansive if $\|Tx - Ty\| \le \|x - y\|$ for all $x, y \in C$. The main result of the paper is that $L_{p,1}(\mu)$ enjoys the weak-star fixed point property.

Theorem. Let C be a weak-star compact convex subset of $L_{p,1}(\mu)$. Then, every nonexpansive mapping on C has a fixed point.

In [4] van Dulst and Sims proved that a dual Banach space with a weak-star sequentially compact unit ball enjoys the weak-star fixed point property, provided that a certain convexity condition is satisfied. To be precise, a dual space E has the weak-star uniform Kadec-Klee property if the following holds: given $\varepsilon > 0$, there is a $\delta(\varepsilon) > 0$ such that for every weak-star convergent sequence (f_n) with $||f_n|| = 1$, $||f_n - f_m|| \ge \varepsilon$ $(m \ne n)$, and with weak-star limit f, we