The Lifespan of Smooth Solutions to the Three-Dimensional Compressible Euler Equations and the Incompressible Limit

THOMAS C. SIDERIS

0. Introduction. In this paper, we will obtain a lower bound for the life-span of classical solutions to the three-dimensional compressible isentropic Euler equations

$$\partial_t \rho + \nabla \cdot \rho u = 0$$

(0.2)
$$\rho(\partial_t u + u \cdot \nabla u) + \nabla \rho^{\gamma} = 0,$$

with initial data of the form

$$\rho(0,x) = \bar{\rho} + \varepsilon \rho_0^{\varepsilon}(x) > 0, \quad u(0,x) = \varepsilon u_0^{\varepsilon}(x),$$

representing a perturbation of order ε from the constant background state $(\rho, u) = (\bar{\rho}, 0)$. For cosmetic reasons, we will omit the dependence of the solution on the parameter ε . Here, $\bar{\rho}$ is a positive constant, $\gamma > 1$, and the functions ρ_0^{ε} and u_0^{ε} are uniformly bounded in the Schwartz space $\mathcal{S}(\mathbb{R}^3)$, for all $\varepsilon > 0$. We shall show that if u_0^{ε} is *irrotational*, then the lifespan T_{ε} of the classical solution of (0.1), (0.2), (0.3) satisfies the lower bound

$$(0.4) T_{\varepsilon} > \exp(C/\varepsilon)$$

for small ε , extending the generic lower bound

$$(0.5) T_{\varepsilon} > C/\varepsilon$$

which holds quite generally for symmetric hyperbolic systems in any number of space dimensions.

Our interest in the question is two-fold. First, it was shown by the author [10] that the life span is bounded above by $T_{\varepsilon} < \exp(C/\varepsilon^2)$ under mild conditions