$Isometries \ of \ {\scriptscriptstyle L_p(X;L_q)} \ and \ Equimeasurability$

Alexander L. Koldobskiî

Introduction. Let (X, \mathcal{A}, σ) and $(X', \mathcal{A}', \sigma')$ be finite measure spaces, and $p \geq 1$. Given a Banach space E, denote by I(E) the set of all linear isometries from E to itself. Let $L_p(X;E)$ be the Lebesgue-Bochner space of (equivalence classes of) strongly measurable functions $f: X \to E$ with

$$\|f\| = \left(\int_X \|f(x)\|^p \, d\sigma(x)\right)^{1/p} < \infty.$$

We are going to characterize the isometries of Lebesgue-Bochner spaces. Let $U: X' \to I(E)$ be a strongly measurable mapping (i.e., for each $e \in E$, the function ||U(x')e|| is σ' -measurable), Φ be a rearrangement operator induced by a regular set isomorphism $\varphi: \mathcal{A} \to \mathcal{A}'$, and $h: X' \to \mathbf{R}$ be a measurable function satisfying $\sigma(A) = \int_{\varphi(A)} |h(x')|^p d\sigma'(x')$ for all sets $A \in \mathcal{A}$. Then the operator $T: L_p(X;E) \to L_p(X';E)$ defined by

(1)
$$Tf(x') = h(x')U(x')(\Phi f(x'))$$

is a linear isometry.

In the classical papers of S. Banach [3] and J. Lamperti [33], the scalar case $(E = \mathbf{R} \text{ or } E = \mathbf{C})$ was treated. If $p \neq 2$, then all isometries of L_p -spaces of scalar functions have the form (1) (without the mapping U). Moreover, isometries of subspaces of L_p are of the same form if $p \neq 2,4,6,\ldots$ The following result sets the stage for the recent progress in the investigation of the isometries of subspaces of L_p :

Equimeasurability Theorem. Let p > 0, $p \neq 2,4,6,...$ and let H be a subspace of $L_p(X,\sigma)$ containing the function $\mathbf{1}(x) \equiv 1$. If $T: H \to L_p(X',\sigma')$ is a linear isometry with $T\mathbf{1} = \mathbf{1}$, then every function $f \in H$ and its image Tf are equimeasurable with respect to σ and σ' , respectively (i.e., $\sigma\{x \in X: f(x) \in B\} = \sigma'\{x' \in X': Tf(x') \in B\}$ for all Borel sets B in \mathbf{R}).