Non Uniqueness of Minimal Graphs

SISTO BALDO & LUCIANO MODICA

0. Introduction. The weak form of the Plateau problem for minimal graphs on an open, connected, and bounded subset Ω of \mathbf{R}^n consists in minimizing the functional

$$F_{\varphi}(u) = \int_{\Omega} \sqrt{1 + |Du|^2} \ dx + \int_{\partial\Omega} |u - \varphi| \ d\mathcal{H}^{n-1}$$

among all functions $u:\overline{\Omega}\to \mathbf{R}$ of a suitable class in which F_{φ} makes sense. The function $\varphi\in L^1(\partial\Omega)$ gives the prescribed boundary values for u. The class of the competing functions u is usually $BV(\Omega)$. Indeed, it is possible to define the area $\int_{\Omega} \sqrt{1+|Du|^2}$ of the graph of u for every $u\in BV(\Omega)$, and furthermore each function $u\in BV(\Omega)$ has a trace on $\partial\Omega$ which belongs to $L^1(\partial\Omega)$. It is well known that a minimizer $u\in BV(\Omega)$ of F_{φ} exists: it is actually smooth within Ω and fulfils the minimal surfaces equation

$$\operatorname{div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0.$$

As for the boundary values, we quote the following important theorem of M. Miranda [M].

Theorem. If φ is continuous in a point $x_0 \in \partial\Omega$ and $\partial\Omega$ is of class C^2 and strictly convex in a neighborhood of x_0 , then the minimizer u of F_{φ} attains at x_0 the value $\varphi(x_0)$.

Note that

$$\begin{split} F_{\varphi} \left(\lambda u + (1 - \lambda) v \right) & \leq \lambda F_{\varphi}(u) + (1 - \lambda) F_{\varphi}(v) \\ & \forall u, v \in BV(\Omega), \ \forall \lambda \in [0, 1] \end{split}$$

and the equality holds only if Du = Dv in Ω . Hence two minimizers differ by a constant, and the above theorem ensures the uniqueness of the minimizers provided that φ has at least one continuity point within a convex part of $\partial\Omega$.