A Sharp Pointwise Bound for Functions with L^2 -Laplacians and Zero Boundary Values on Arbitrary Three-Dimensional Domains

Wenzheng Xie

1. Introduction. In this paper we establish the following:

Theorem. Let Ω be an arbitrary open set in \mathbb{R}^3 . If $u \in \hat{H}^1_0(\Omega)$ and $\Delta u \in L^2(\Omega)$, then

(1)
$$\sup_{\Omega} |u| \le \frac{1}{\sqrt{2\pi}} \|\nabla u\|^{1/2} \|\Delta u\|^{1/2}.$$

The constant $\frac{1}{\sqrt{2\pi}}$ is the best possible for each Ω .

Throughout this paper, $\|\cdot\|$ denotes the $L^2(\Omega)$ norm. The gradient ∇ and the Laplacian Δ are understood in the distributional sense. The homogeneous Sobolev space $\hat{H}^1_0(\Omega)$ is defined to be the completion of $C_0^{\infty}(\Omega)$ in the Dirichlet norm $\|\nabla \cdot\|$.

Inequalities of this type are used in the study of nonlinear partial differential equations (see [4, p. 299], [7, p. 12] and [8]). For bounded domains with smooth boundaries, an inequality of the form of (1), but with a constant depending on the domain, can be obtained by combining the Sobolev inequality

(2)
$$\sup_{\Omega} |u| \le c ||u||_{H^{1}(\Omega)}^{1/2} ||u||_{H^{2}(\Omega)}^{1/2},$$

with the Poincaré inequality, and the a priori estimate

$$||u||_{H^2(\Omega)} \le c||\Delta u||.$$

The inequality (2) has been proven for domains that satisfy a weak cone condition [1]. The estimate (3) has been proven for domains with $C^{1,1}$ boundaries or convex