Some Counterexamples in Subalgebras of $L^{\infty}(D)$

Pamela Gorkin & Keiji Izuchi

ABSTRACT. Let $\mathbb D$ denote the open unit disc in the complex plane and let dA denote the usual two-dimensional Lebesgue area measure. In this paper, we think of $H^{\infty}(\mathbb D)$ as a closed subalgebra of $L^{\infty}(\mathbb D, dA)$. Motivated by the Chang-Marshall theorem for subalgebras of L^{∞} on the circle containing H^{∞} , we study the problem of when a subalgebra of $L^{\infty}(\mathbb D, dA)$ of the form $H^{\infty}(\mathbb D)[\bar f]$, where f is a function in H^{∞} , is generated by H^{∞} and the complex conjugates of the interpolating Blaschke products in $H^{\infty}(\mathbb D)[\bar f]$.

1. Introduction. Let \mathbb{D} denote the open unit disc in the complex plane and let dA denote the usual two-dimensional Lebesgue area measure. We let $H^{\infty}(\mathbb{D})$ denote the algebra of bounded analytic functions on \mathbb{D} . Unless otherwise stated, we will be thinking of $H^{\infty}(\mathbb{D})$ as a closed subalgebra of $L^{\infty}(\mathbb{D}, dA)$. For a function $u \in L^{\infty}(\mathbb{D}, dA)$, we denote the closed subalgebra generated by $H^{\infty}(\mathbb{D})$ and u by $H^{\infty}(\mathbb{D})[u]$.

A Blaschke product b with zero sequence $\{z_n\}$ satisfying

$$\inf_{n} \left(1 - |z_n|^2 \right) \left| b'(z_n) \right| = \delta(b) > 0$$

is said to be an interpolating Blaschke product. If, in addition, the zero sequence satisfies

$$\liminf_{n\to\infty} (1-|z_n|^2) |b'(z_n)| = 1,$$

the Blaschke product is called a thin Blaschke product and the sequence is a thin sequence.

When all the algebras above are considered on the unit circle, a great deal is known about them. Denoting the algebra of essentially bounded measurable functions on the unit circle by $L^{\infty}(\mathbb{T})$, the algebra H^{∞} may be thought of as a closed subalgebra of $L^{\infty}(\mathbb{T})$ by taking radial limits of the function in H^{∞} .