Analytic Continuation in Bergman Spaces and the Compression of Certain Toeplitz Operators

WILLIAM T. Ross

ABSTRACT. Let G be a Jordan domain and $K \subset G$ be relatively closed with $\operatorname{Area}(K) = 0$. Let $A^2(G \setminus K)$ and $A^2(G)$ be the Bergman spaces on $G \setminus K$, respectively G and define $\mathcal{N} = A^2(G \setminus K) \ominus A^2(G)$. In this paper we show that with a mild restriction on K, every function in \mathcal{N} has an analytic continuation across the analytic arcs of ∂G that do not intersect K. This result will be used to discuss the Fredholm theory of the operator $C_f = P_{\mathcal{N}} T_f|_{\mathcal{N}}$, where $f \in C(\bar{G})$ and T_f is the Toeplitz operator on $A^2(G \setminus K)$.

1. Introduction. Let U be a bounded, open, connected, non-empty subset of C. Let $L^2(U)$ denote the Hilbert space of complex valued measurable functions (with respect to two-dimensional Lebesgue measure) on U which are square integrable. The inner product is given by $\langle f,g\rangle=\int_U f\bar{g}\ dA$ and the norm of a function $h\in L^2(U)$ will be given by $\|h\|_2=\langle h,h\rangle^{1/2}$. The Bergman space, denoted $A^2(U)$, is the closed subspace of all functions in $L^2(U)$ which are analytic on U. We motivate this paper with the following example. Let D be the unit disk and $K\subset D$, K compact with Area(K)=0. If $f\in A^2(D\backslash K)$, then in some annulus A contained in D, f has a Laurent series

$$f(z) = \sum_{n=-\infty}^{\infty} c_n z^n.$$

Define f_1 and f_2 in A by

(1)
$$f_1(z) = \sum_{n=0}^{\infty} c_n z^n$$
$$f_2(z) = \sum_{n=-\infty}^{-1} c_n z^n$$

1363
Indiana University Mathematics Journal ©, Vol. 40, No. 4 (1991)