CR-transformations of Real Manifolds in \mathbb{C}^n

SERGEY PINCHUK

1. Introduction. The notions of CR-manifold and CR-function are now fundamental in Several Complex Variables. The development of the theory of CR-manifolds and CR-functions naturally requires us to also introduce and to study CR-transformations.

Let M_1 , M_2 be CR-manifolds in \mathbb{C}^n . A mapping $f=(f_1,\ldots,f_n):M_1\to M_2$ is called a CR-mapping if all components f_j are CR-functions on M_1 , i.e., they satisfy the tangential Cauchy-Riemann conditions. Here the functions f_j are not necessarily differentiable because weak tangential Cauchy-Riemann conditions make sense for continuous functions and even for distributions. We restrict ourselves to continuous CR-mappings to make sense out of the expression $f:M_1\to M_2$.

Definition 1. A mapping $f: M_1 \to M_2$ is called a CR-homeomorphism if

- (i) f is a homeomorphism,
- (ii) f is a CR-mapping,
- (iii) f^{-1} is also a CR-mapping.

Definition 2. A CR-manifold M in \mathbb{C}^n is called locally k-CR-straightened near a point $p^0 \in M$ if there exists a CR-manifold M_0 in \mathbb{C}^{n-k} and a CR-homeomorphism

$$f: (M_0 \times \mathbf{C}^k) \cap V \to M \cap U,$$

where $U, V \subset \mathbb{C}^n$ are some neighborhoods of the points $p^0, q^0 = f^{-1}(p^0)$ respectively.

In Section 2 we discuss the problem of CR-straightening. Each k-CR-straightened manifold M is foliated by complex varieties of dimension k. We shall assume everywhere below that these varieties are non-singular, i.e., they are complex manifolds in \mathbb{C}^n .

Each point p of a k-CR-straightened manifold m belongs to a unique leaf S of the foliation. We denote by π_p the tangent plane $T_p(S) \subset T_p^c(M)$ to S at