Existence and Nonexistence Results for Semilinear Equations on the Heisenberg Group

NICOLA GAROFALO & ERMANNO LANCONELLI

1. Introduction. The aim of this paper is to establish existence, regularity and nonexistence results for the problem

(1.1)
$$\begin{cases} \Delta_{\mathsf{H}^n} u + f(u) = 0 & \text{in } D \\ u|_{\partial D} = 0 \end{cases}$$

where D is an open (bounded or unbounded) subset of the Heisenberg group \mathbb{H}^n and $\Delta_{\mathbb{H}^n}$ is the subelliptic Laplacian on \mathbb{H}^n . We recall that \mathbb{H}^n is the Lie group whose underlying manifold is $\mathbb{C}^n \times \mathbb{R}$, $n \in \mathbb{N}$, endowed with the group law

$$(1.2) (z,t) \circ (z',t') = (z+z', t+t'+2 \text{ Im } z \cdot z'),$$

where for $z, z' \in \mathbb{C}^n$ we have let $z \cdot z' = \sum_{j=1}^n z_j \overline{z_j'}$. Setting $z_j = x_j + iy_j$, then $(x_1, \ldots, x_n, y_1, \ldots, y_n, t)$ form a real coordinate system for \mathbb{H}^n . In this coordinate system the vector fields

(1.3)
$$X_{j} = \frac{\partial}{\partial x_{j}} + 2y_{j} \frac{\partial}{\partial t},$$
$$j = 1, \dots, n,$$
$$Y_{j} = \frac{\partial}{\partial y_{i}} - 2x_{j} \frac{\partial}{\partial t},$$

generate the real Lie algebra of left-invariant vector fields on \mathbb{H}^n . It is easy to check that $[X_j, Y_k] = -4\delta_{jk} \frac{\partial}{\partial t}$, j, k = 1, ..., n, and that all other commutators are trivial.

The subelliptic Laplacian is defined as

(1.4)
$$\Delta_{\mathbb{H}^n} = \sum_{i=1}^n (X_j^2 + Y_j^2).$$

 $\Delta_{\mathbb{H}^n}$ is invariant w.r.t. left-translations. Furthermore, there is a natural group of dilations on \mathbb{H}^n given by

(1.5)
$$\delta_{\lambda}(z,t) = (\lambda z, \lambda^2 t), \qquad \lambda > 0,$$