The Necessity of the Wiener Test for Some Semi-linear Elliptic Equations

DAVID R. ADAMS & ANN HEARD

ABSTRACT. Regular boundary points for solutions to the Dirichlet problem for $-\text{div}(A(x)\nabla u) = f(x,u,\nabla u)$ in an arbitrary bounded domain in *n*-dimensional space, are regular points for Laplace's equation, when A(x) is Dini continuous and f has quadratic growth in ∇u .

1. Introduction. The purpose of this note is to investigate the question of the necessity of the classical Wiener Test at a boundary point for the Dirichlet problem for the nonlinear equation

(1.1)
$$-\operatorname{div}(A(x)\nabla u) = f(x, u, \nabla u)$$

in an arbitrary bounded domain $\Omega \subset \mathbf{R}^n$, $n \geq 2$. Here, the $n \times n$ matrix A(x) is continuous, symmetric, and uniformly elliptic on Ω ; the f is a given smooth function with at most quadratic growth in $\nabla u = \text{gradient of } u$; see Section 2 below for the detailed definitions.

By a Wiener Test at a specific boundary point $x_0 \in \partial \Omega$, we mean a sharp geometric condition on the complement of Ω , Ω^c , in the neighborhood of x_0 , that insures that solutions to (1.1) will take on their preassigned continuous boundary data, continuously, at the point in question. Such a condition was first given in 1924 by N. Wiener in [W]. This condition can be restated as: $x_0 \in \partial \Omega$ is a "regular point" in the above sense for the class of harmonic functions on Ω iff

(1.2)
$$\int_0 r^{2-n} \operatorname{cap}(\Omega^c \cap B(x_0, r)) \frac{dr}{r} = +\infty.$$

Here $B(x_0,r)$ is an open ball centered at x_0 of radius r contained in \mathbb{R}^n and $\operatorname{cap}(\cdot)$ is the classical Newtonian capacity set function defined for all Borel sets in \mathbb{R}^n when $n \geq 3$; when n = 2, $\operatorname{cap}(\cdot)$ is the usual "conductor capacity" (see Section 3). The fact that (1.2) is also known to be both necessary and