On the Structure of the Conformal Scalar Curvature Equation on \mathbb{R}^n

Kuo-Shung Cheng & Wei-Ming Ni

ABSTRACT. In this paper we wish to conduct a thorough study of the conformal scalar curvature equation ((1.1) below) in \mathbb{R}^n , $n \geq 3$, in case the prescribed scalar curvature function K is negative. First, we establish the existence and uniqueness of the maximal positive solution. Then a complete classification of all possible positive solutions is obtained if K behaves like $-|x|^{-\ell}$ near ∞ for some constant $\ell > 2$.

1. Introduction. In this paper we shall investigate the structure of the set of all positive solutions of the equation

$$(1.1) \Delta u + K u^p = 0$$

in \mathbf{R}^n , $n \geq 3$, where $\Delta = \sum_{i=1}^n \partial^2/\partial x_i^2$, p > 1, and $K \leq 0$ is a given smooth function on \mathbf{R}^n . Due to the geometric significance of Equation (1.1) (see next paragraph), we shall restrict ourselves to positive solutions of (1.1) in the entire space \mathbf{R}^n throughout this paper. The main results here include the existence and uniqueness of a maximal positive solution of (1.1), and, in some important cases, a complete classification of all positive solutions of (1.1) in \mathbf{R}^n .

Equation (1.1) arises in Riemannian geometry. Let (M,g) be a Riemannian manifold of dimension n and K be a given smooth function on M. The following question has been posed: Can one find a new metric g_1 on M such that K is the scalar curvature of g_1 and g_1 is conformal to g? Since the conformality requirement on g_1 is equivalent to the existence of a positive smooth function φ on M such that $g_1 = \varphi g$, the problem is reduced to finding positive solutions of the elliptic equation

(1.2)
$$\frac{4(n-1)}{n-2}\Delta_g u - ku + Ku^{(n+2)/(n-2)} = 0$$

on M, where Δ_g is the Laplace-Beltrami operator on M in the g-metric and k is the scalar curvature of (M,g), if we write $\varphi = u^{4/(n-2)}$. In the special case