Spectral Theory of Operators of Hankel Type, II

JAMES S. HOWLAND

ABSTRACT. For smooth real K(x), the self-adjoint singular integral operator

$$Kf(x) = \int_0^\infty K(x+y)f(y) \ dy$$

has no singular continuous part, non-zero point eigenvalues of finite multiplicity accumulating only at zero, and an absolutely continuous part determined by the limits of xK(x) at zero and infinity.

Introduction. This paper discusses the spectral theory of self-adjoint integral operators on $L_2(0,\infty)$ with sum kernels

$$Kf(x) = \int_0^\infty K(x+y)f(y) \ dy$$

- [5, Chapter 2]. With sufficient smoothness on K(x), it will be shown that
- (i) the non-zero eigenvalues of H are of finite multiplicity and can accumulate only at zero;
- (ii) H has no singular continuous spectrum, and
- (iii) the absolutely continuous spectrum of H is the direct sum of the multiplications by λ on $L_2[0,\pi a]$ and $L_2[0,\pi b]$ where a and b are the limits at zero and infinity of k(x) = xK(x).

If

$$K(x) = \int_0^\infty e^{-xs} |\varphi(x)|^2 ds,$$

then (under technical conditions on φ), H is unitarily equivalent to the positive definite operator

(I.1)
$$H(\varphi,\varphi) = \int_0^\infty \frac{\varphi(x)\bar{\varphi}(y)}{x+y} f(y) \ dy$$

427

Indiana University Mathematics Journal ©, Vol. 41, No. 2 (1992)