$Some\ L^p\ Estimate\ for$ $the\ Exterior\ Stokes\ Flow\ and$ $An\ Application\ to\ the\ Non-Stationary$ $Navier-Stokes\ Equations$

HIDEO KOZONO & TAKAYOSHI OGAWA

ABSTRACT. In $n(\geq 3)$ -dimensional exterior domains Ω , it is known that if $1 , the estimate <math>||D^2u||_p \leq C||A_pu||_p$ holds for all $u \in D(A_p)$, where A_p is the Stokes operator in $L_r^P(\Omega)$. If $n/2 \leq p$, a counter example defeats validity of this estimate. If we set an additional term and the right hand side, the second derivatives in $L^p(\Omega)$, however, can be dominated as follows.

$$||D^2u||_p \le C(||A_pu||_p + ||\nabla u||_r), \quad u \in D(A_p),$$

where $p \leq r < \infty$. Our result also covers the case n = 2.

As an application, we obtain an asymptotic behavior of second derivertives in $L^p(\Omega)$ for weak and strong solutions to the non-stationary Navier-Stokes equations.

0. Introduction. Let Ω be an exterior domain in \mathbb{R}^n $(n \geq 2)$, i.e., a domain having a compact complement $\mathbb{R}^n \setminus \Omega$, and assume that the boundary $\partial \Omega$ is of class $C^{2+\mu}$ with $0 < \mu < 1$. Consider the boundary-value problem for the Stokes equations in Ω :

(S–S)
$$\begin{cases} -\Delta u + \nabla p = f, & x \in \Omega, \\ \text{div } u = 0, & x \in \Omega, \\ u = 0, & x \in \partial \Omega, \end{cases}$$

where $u(x) = (u_1(x), u_2(x), \dots, u_n(x))$ and p(x) denote the unknown velocity vector and pressure at a point $x \in \Omega$, respectively, while $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$ is a given external force. In this paper, we are mainly interested in an a-priori estimate in L^p for a pair of the solution (u, p) of (S-S). There is a large literature on L^p -theory for the Stokes equations (cf. [22], [31]). When Ω is a